

Sinclair Logo 2
Programming Reference Manual

Please Note:Please Note:Please Note:Please Note:
This manual was Scanned, OCR-ed and PDF by

Stephen Parry-Thomas 29 March 2004.
For ZX-Spectrum Users and to preserve the manual.

Sinclair Logo 2
Programming Reference Manual

by Ellen Sparerby Ellen Sparerby Ellen Sparerby Ellen Sparer
and the editorial staff of SOLI/LCSIand the editorial staff of SOLI/LCSIand the editorial staff of SOLI/LCSIand the editorial staff of SOLI/LCSI

This edition first published in 1984 by

Sinclair Research Ltd
25 Willis Road Cambridge CB1 2AQ England
ISBN 185016 018 X

Program and Documentation: © Copyright Logo Computer Systems Inc, 1983

© Copyright Les Systems d'Ordinateur Logo
 International, 1983
Packaging: © Copyright Sinclair Research Ltd, 1984
Cover Illustration: © Copy right Dave Eaton, Young Artists, 1984

SINCLAIR and ZX SPECTRUM are Trade Marks of Sinclair Research Ltd.
LOGO is a Trade Mark of Logo Systems Inc.

All rights reserved. No part of the LOGO program or documentation may be
reproduced in any form, either in whole or in part, without the specific written
permission of either Logo Computer Systems Inc or Les Systems d'Ordinateur Logo
International. Unauthorised hiring, lending or sale and repurchase prohibited.

Production supervised by Business Literature Services Ltd;
Typeset by Goodfellow & Egan Ltd;
French's Mill, French's Road, Cambridge CB4 3NP

Printed in England by Staples Printers St Albans Limited at The Priory Press.

ContentsContentsContentsContents
PrefacePrefacePrefacePreface

Chapter 1Chapter 1Chapter 1Chapter 1 A Summary of Logo grammarA Summary of Logo grammarA Summary of Logo grammarA Summary of Logo grammar

Introduction 1
Procedures 1
Objects 3
Delimiters 4

Inputs 4
Quotes, colons, brackets and parentheses 5

Commands and operations 6
Variables 7
Global and local variables 8
Logo lines 9
Arithmetic 11
Screens, modes and prompts 12
Recursion 13
Exiting from Logo 14

Chapter 2Chapter 2Chapter 2Chapter 2 The TurtleThe TurtleThe TurtleThe Turtle

Introduction 15
 BACK (BK) 15
 BACKGROUND (BG) 15
 CLEAN 16

CLEARSCREEN (CS) 16
 DOT 16

FENCE 16
 FORWARD (FD) 16
 HEADING 16
 HIDETURTLE (HT) 17
 HOME 17
 LEFT (LT) 17
 PENCOLOUR (PC) 17
 PENDOWN (PD) 17
 PENERASE (PE) 18
 PEN REVERSE (PX) 18
 PENUP (PU) 18
 POSITION (POS) 18
 SCRUNCH 18
 SETBG 19
 SETBORDER (SETBR) 19
 SETHEADING (SETH) 19

SETPC 19
SETPOS 19
SETSCRUNCH (SETSCR) 19
SETX 20
SETY 20
SHOWNP 20
SHOWTURTLE (ST) 20
TOWARDS 20
WINDOW 20
WRAP 21
XCOR 21
YCOR 21

Chapter 3Chapter 3Chapter 3Chapter 3 Words and listsWords and listsWords and listsWords and lists

Introduction 23
ASCII 24
BUTFIRST (BF) 25
BUTLAST (BL) 26
CHAR 26
COUNT 26
EMPTYP 27
EQUALP = 28
FIRST 28
FPUT 29
ITEM 29
LAST 29
LIST 30
LISTP 30
LPUT 31
MEMBERP 31
NUMBERP 32
SENTENCE (SE) 32
WORD 33
WORDP 33

Chapter 4Chapter 4Chapter 4Chapter 4 VariablesVariablesVariablesVariables

Introduction 35
MAKE 35
NAMEP 36
THING 37

Chapter 5Chapter 5Chapter 5Chapter 5 Arithmetic operationArithmetic operationArithmetic operationArithmetic operationssss
Introduction 39
ARCCOS 40
ARCCOT 40
ARCSIN 40
ARCTAN 40
COSINE (COS) 40
COTANGENT (COT) 41
DIV 41
INT 41
PRODUCT 42
RANDOM 42
REMAINDER 43
ROUND 44
SINE (SIN) 44
SORT 44
SUM 45
TANGENT (TAN) 45
+ 45

 - 45
 * 46

/ 46
< 46
> 47

 = 47

Chapter 6Chapter 6Chapter 6Chapter 6 Defining and editingDefining and editingDefining and editingDefining and editing

Introduction 49
EDIT (ED) 49
EDNS 51
TO 52
END 52

Chapter 7Chapter 7Chapter 7Chapter 7 Conditional expressions and flow of controlConditional expressions and flow of controlConditional expressions and flow of controlConditional expressions and flow of control

Introduction 55
BYE 55
IF 55
OUTPUT (OP) 56
REPEAT 57
RUN 57
STOP 58
TOPLEVEL 58

Chapter 8Chapter 8Chapter 8Chapter 8 Logical Logical Logical Logical operationsoperationsoperationsoperations
Introduction 61
AND 61
NOT 62
TRUE 62

Chapter 9Chapter 9Chapter 9Chapter 9 The outside worldThe outside worldThe outside worldThe outside world

Introduction 65
KEYP 65
PRINT (PR) 65
READCHAR (RC) 66
READLIST (RL) 66
SHOW 67
SOUND 67
STARTROBOT 68
STOPROBOT 68
TYPE 68
WAIT 69

Chapter 10Chapter 10Chapter 10Chapter 10 Screen commandsScreen commandsScreen commandsScreen commands

Introduction 71
BRIGHT 71
CLEARTEXT (CT) 71
COPYSCREEN 71
CURSOR 72
FLASH 72
INVERSE 72
NORMAL 72
OVER 72
SETCURSOR (SETCUR) 73
SETTC 73

 TEXTSCREEN (TS) 74
Chapter 11Chapter 11Chapter 11Chapter 11 WorkspaceWorkspaceWorkspaceWorkspace

Introduction 75
ERALL 75
ERASE (ER) 75
ERN 75
ERNS 76
ERPS 76
PO 76
POALL 76
PONS 76
POPS 77
POTS 77

Chapter 12Chapter 12Chapter 12Chapter 12 Saving and retrieving your workSaving and retrieving your workSaving and retrieving your workSaving and retrieving your work
Introduction 79
SAVE 80
SAVEALL 80
SAVED 80
SAVESCR 81
SETDRIVE 81
CATALOG 81
ERASEFILE 81
LOAD 81
LOADD 82
LOADSCR 82
PRINTON 82
PRINTOFF 82
COPYSCREEN 82

Chapter 13Chapter 13Chapter 13Chapter 13 Definitions and redefinitions of functionsDefinitions and redefinitions of functionsDefinitions and redefinitions of functionsDefinitions and redefinitions of functions
Introduction 83
COPYDEF 83
DEFINE 83
DEFINEDP 84
PRIMITIVEP 84
TEXT 84

Chapter 14Chapter 14Chapter 14Chapter 14 Diverse functionsDiverse functionsDiverse functionsDiverse functions
Introduction 85
NODES 85
RECYCLE 85
 .CONTENTS 85
 .PRIMITIVES 85
 .RESERVE 86
 .RESERVED 86
 .BLOAD 86

 .BSAVE 86
 .SETSERIAL 87
 .SERIALIN 87
 .SERIALOUT 87
 .DEPOSIT 87

 .EXAMINE 88
 .CALL 88

Appendix 1Appendix 1Appendix 1Appendix 1 Logo messagesLogo messagesLogo messagesLogo messages 89898989
Appendix 2Appendix 2Appendix 2Appendix 2 ASCII codesASCII codesASCII codesASCII codes 91919191
IndexIndexIndexIndex indexindexindexindex 93939393

Neither the authors nor the publishers can be held liable for any direct,
 indirect, incidental or consequential damages relating to the use of the
 LOGO program and documentation.

While every effort has been made to ensure the accuracy of the LOGO
program and documentation, the authors and publishers cannot be held
responsible for any error which may occur.

The authors and publishers reserve the right to change the LOGO manuals,
glossary and software at any time and without notice.

Les Systems d'Ordinateur Logo Computer Systems Inc
Logo International LCSI Inc
SOLIIntI 9960 Cote De Lisse
33 Rue de Poissy Lachine Quebec
75005 Paris CANADA H8T 1 A1
FRANCE

PrefacePrefacePrefacePreface
This is a reference manual for experienced Logo
users, rather than a guide for newcomers. If you are
a newcomer, you should start by reading Sinclair
Logo 1 - Turtle Graphics. If, however, you have
used Logo before, this manual may be all you need
to understand Sinclair Logo.

Sinclair Logo 1 gives full details of how to set up
your Sinclair ZX Spectrum, how to load Logo, and
how to use turtle graphics.

Sinclair Logo 2 gives concise descriptions of the
Logo primitive procedures - or primitives - the
in-built terms of the language, and each is
illustrated with examples. We can show you the
way with one or two examples; we hope that you
will then make up some examples of your own in
order to test the full power of Sinclair Logo.

The first chapter of this Manual is a general
overview of Logo grammar; the rest define and
explain the use of each of the primitives, grouped
according to their interrelationships.

If you wish to find a particular definition or
primitive, consult the index at the back of the
Manual.

If you are looking for a primitive for a particular task
within a program, check the table of contents,
where you will find the primitives listed by
category.

Chapter 1Chapter 1Chapter 1Chapter 1
A Summary of Logo grammarA Summary of Logo grammarA Summary of Logo grammarA Summary of Logo grammar
INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION

As with all languages, Logo has a grammar -
certain basic rules for writing and combining the
building blocks of the language. In this section we
will describe how to use this grammar, so that Logo
understands what you want it to do.

PROCEDURESPROCEDURESPROCEDURESPROCEDURES One of the powerful aspects of Logo is its ability to
work with procedures (building blocks). There are
two kinds of procedures: those which Logo 'knows'
as they are present every time you load your Sinclair
Logo (they are called primitive procedures) and
those which you define yourself.

For example, if you type:

HIDETURTLE

the turtle disappears from the screen. Logo knows
how to execute this action without being told.
HIDETURTLE is a primitive procedure.
However, you can teach Logo new procedures:

TO WELCOME
PRINT [WELCOME TO SINCLAIR
 LOGO]
END
WELCOME defined

In this example, WELCOME is a procedure which
prints the list [WELCOME TO SINCLAIR LOGO]
when Logo is asked to WELCOME.

Note: the firstfirstfirstfirst line of a procedure you define
yourself is called the TITLE LINE. It always begins
with TOTOTOTO followed by the name of the procedure.

The last line always contains the word ENDENDENDEND by
itself.

There is an important difference between defining a.
procedure and asking Logo to execute it. We are
defining a procedure where we tell Logo how TO
WELCOME. We execute it by typing WELCOME
when the ? prompt appears on the screen.

If you enter WELCOME after the ? prompt, Logo
will execute the procedure WELCOME and reply
with:

WELCOME TO SINCLAIWELCOME TO SINCLAIWELCOME TO SINCLAIWELCOME TO SINCLAIR LOGOR LOGOR LOGOR LOGO
However, we can also call a procedure indirectly. In
the procedure WELCOME we have called the
primitive procedure PRINT. You can write
procedures using previously defined procedures, a
facility which makes Logo a particularly powerful
language.

TO LONGWELCOME
WELCOME
PRINT [I THINK WE'LL HAVE FUN]
PRINT "GOODBYE"
END
LONGWELCOME defined

Here WELCOME is a subprocedure of
LONGWELCOME. And LONGWELCOME is the
superprocedure of WELCOME.

LONGWELCOME
WELCOME TO SINCLAIR LOGO
I THINK WE'LL HAVE FUN
GOODBYE
If you type a word that has not been defined as a
procedure you will get a Logo message; for
example, type:

JEAN

I don't know how to JEAN

OBLECTSOBLECTSOBLECTSOBLECTS Logo objects are words or lists used as inputs to or
outputs from procedures.

A word is a series of alphabetic or numeric
characters. A word is contained within two
delimiters (see next section). Each character in a
word is said to be an element of that word.

A quote mark at the beginning of the word enables
Logo to distinguish words from procedure names.
There is also a word with no characters; called the
empty word; it is written with a single quote mark.

PRINT "R2B2
R2B2
PRINT "WELCOME
WELCOME

In this example both "R2B2 and "WELCOME are
Logo words.

Numbers are also words in Logo, but you can write
them without the quote mark.

PRINT 25
25

The words concerned with logic, TRUE and FALSE,
may also be written without the quote mark.

PRINT "TRUE
TRUE
PRINT TRUE
TRUE
PRINT "FALSE
FALSE
PRINT FALSE
FALSE

A list consists of a series of Logo objects; ie, words
or other lists. A list is usually enclosed by brackets.
The individual elements that comprise the list are
separated by blank spaces.

An empty list is written as [].

[CAT DOG MOUSE HOUSE] is a list containing
four elements

[[CAT DOG] [HOUSE MOUSE]] is a list containing
two elements, each of two elements.

[FORWARD 50 [2R 5B] BLUE] is a list containing
four elements

Logo objects can be used as variable names. For
example:

MAKE "WELCOME 38

In this example, WELCOME is not only the series of
letters, W, E, L, C, 0, M, E, but it is now being used
as a variable name and has the value 38.

DELIMITERSDELIMITERSDELIMITERSDELIMITERS A word is usually delimited by spaces at either end

of it, which separate it from the rest of the line.
However, there are some other delimiters:
[]() = > < + - * /

There is no need to type a space between a word
and any of these characters although it is customary
to do so for clarity.

For example:

1>2+(3+4)/5-6
1 > 2 + (3 + 4) / 5 - 6

are the same.

Note that care must be taken with the minus sign as
only -6 is taken to be 'minus six'.

INPUTSINPUTSINPUTSINPUTS Some procedures need inputs to enable them to

work. Inputs are Logo objects (words or lists); they
may either be given explicitly, or appear as the
outputs of other procedures.

PRINT [GOOD MORNING]
GOOD MORNING

Here the list [GOOD MORNING] is the input for
the primitive procedure PRINT.

PRINT must be given an input as shown by:

PRINT
Not enough inputs to PRINT

When you define a procedure using TO, the title
line must contain the word TO, the name of the
procedure and the inputs for that procedure if any.
Each input must be preceded by a colon.

TO MOOD :RESPONSE
PRINT CDEAR TURTLE, HOW ARE
 YOU?]
PRINT :RESPONSE
PRINT [PLEASURE TO TYPE TO
 YOU, GOODBYE]
END

When a procedure is called, the user must give the
procedure name followed by the necessary number
of Logo words that the procedure is expecting

MOOD "FINE
DEAR TURTLE, HOW ARE YOU?
FINE
PLEASURE TO TYPE TO YOU,
GOODBYE

QUOTES, COLONS, BRACKETS ANQUOTES, COLONS, BRACKETS ANQUOTES, COLONS, BRACKETS ANQUOTES, COLONS, BRACKETS AND PARENTHESESD PARENTHESESD PARENTHESESD PARENTHESES
Logo interprets every undefined word as a re
to run a procedure, unless you specifically indicate

 otherwise by preceding the Logo object with one of
 the following symbols:

The quote mark indicates to Logo that the chain of
 characters ending with a space which follows is a
 word.

The colon tells Logo that the chain of characters
 ending with a space which follows is the name of a
 Logo object and returns the contents of that Logo
 object.

Brackets tell Logo that the elements within them
 form a list.

Parentheses allow you to give more than two inputs
 to certain primitives.

PR (SENTENCE [I AM] [THE]
[GREATEST])
I AM THE GREATEST

PR (WORD "EN "THU "SIASM)

 ENTHUSIASM

Parentheses also allow you to control arithmetic
 operations, (see below for further details).

PRINT 2 * 3 + 5
 11

PRINT 2 * (3 + 5)
 16

COMMANDS AND OPERATIONSCOMMANDS AND OPERATIONSCOMMANDS AND OPERATIONSCOMMANDS AND OPERATIONS
In Logo, a procedure can be either a command or

 an operation.

A commandcommandcommandcommand is a procedure which does not outputdoes not outputdoes not outputdoes not output a
 value.

An operationoperationoperationoperation is a procedure which doesdoesdoesdoes outputoutputoutputoutput a
 value.

Consequently, any procedure that is an operation
 can act only as an input for another procedure.

For example:

TO ADD3 :A
 A + 3

END

ADD3 4
 You don't say what to do with 7 in
 ADD3

results in a Logo message as the value produced
 does not form the input to a procedure. But:

TO ADDS :A
 OUTPUT :A + 3
 END
 PR ADDS 4
 7

is correct.

Note: the value from :A+3 is the input for
 OUTPUT. In its turn the value from ADDS 4 is the
 input for PR.

See what happens if you try to use a command as
 an input to another command:

PRINT FD 100

The turtle moves 100 steps; Logo returns a
 message:

FD does not output to PRINT

All the procedures you define yourself are either
 commands or operations.

VARIABLESVARIABLESVARIABLESVARIABLES In Logo variables can be named.

Normally, variables are created using the procedure
 MAKE. For example:

MAKE "A 1
 MAKE "B 2

And, the value of a variable can be obtained by
 using the : character before the name. (The
 procedure THING can be used instead of the :
 character, if desired.)

PRINT :A

will therefore search for the value attributed to the
 variable A and 1 will be outputted and used by the
 PRINT procedure.

Variables can hold a variety of data types and a user
 of Logo is not required to specify any prior details to
 Logo. For example:

MAKE "A 1 would give A a single
 numeric value.

MAKE "A [1 2 3]would give A a list of
 three numeric values, in
 effect, forming a list of
 numbers.

MAKE "A "APPLE would give A a single
 word value.

MAKE "A [APPLE would give A a list of
 PEAR GRAPES] three words.

Data types can also be mixed. For example:

MAKE "A [2 APPLE 3 PEAR]

GLOBAL AND LOCAL VARIABLESGLOBAL AND LOCAL VARIABLESGLOBAL AND LOCAL VARIABLESGLOBAL AND LOCAL VARIABLES
 In Logo there are strict rules concerning global and
 local variables.
 1 A variable created in Logo mode, by using MAKE,
 will be global. This means that variables named
 with MAKE exist both during and after execution of
 procedures.

2 A variable created within a procedure, by using
 MAKE, and not given as an input (ie, does not
 appear in the title line) to that procedure, will be
 global.

3 A variable declared as an input to a procedure, and
 not created previously, will be local to that
 procedure and any subprocedures. Once the
 procedure has completed all the instructions within
 it, the variable no longer has a value.

The following examples show these rules.

MAKE "A 22
 PR 22

The variable A is global and will always have a
 value.

TO ONE
 MAKE "B 24
 TWO :B
 END

TO TWO :B
 PR :B

END
 ONE
 24

The variable B is created in the procedure ONE
 before it is used as an input to procedure TWO. It is
 therefore global.

However:

TO ONE
 TWO 24
 PR :B

END
TO TWO :B

 END

ONE
 B has no value in ONE

gives a Logo message as the variable B is local to
 the procedure TWO, and any subprocedures it
 might have, and thereby unavailable to the
 superprocedure ONE.

LOGOLOGOLOGOLOGO LINESLINESLINESLINES A Logo line can be much longer than a line on the
 screen. A Logo line may contain up to 242
 characters - spaces included - and it ends when
 you press the ENTER key.

MAKE "PEOPLE [MEN WOMEN BOYS G !
 IRLS]

The ! indicates that the next screen line is a
 continuation of the same Logo line.

Here are some indications to help you to interpret a
 complex Logo line.

1 When you see a procedure name, be sure you
 know:
 Whether it is a command or an operation;
 How many inputs it should have.
 2 The first procedure of a Logo line must always be
 a command.
 3 An operation is written as input to another
 procedure.
 4 Be sure to account for every input to a procedure.
 5 When the inputs to a command have been
 accounted for, the next procedure must be another
 command.

Let's look at an example:

PRINT SE [I AM] WORD BUTLAST
 :WD "IER

Let's break down this Logo line.

PRINT is a command with a single input. This must
be the output of SE, which is an operation with two
inputs.

The first input to SE is the list [I AM]. The second is
the output of the operation WORD. The latter is,
once again, an operation with two inputs. The first
is the operation BUTLAST, which has a single input
:WD. The second input to WORD must therefore
be "IER.

Since there are no more procedure names, and
every input on the line has been accounted for, we
have finished. The following diagram summarises
what we have done.

PRINT
SE

[I AM] WORD

BUTLAST "IER
 :WR

So, for example, if the value of WD is HAPPY then
 the line would print I AM HAPPIER.

ARITHMETICARITHMETICARITHMETICARITHMETIC Logo interprets numbers as words.
 You do not need to put a quote mark before a
 number, although it makes no difference to Logo if
 you do.

MAKE "A "20
 MAKE "B 20
 PR :A

20
 PR :B

20

The following priority is given to arithmetic
 operations:
 Division,
 Multiplication,
 Subtraction,
 Addition.

Division is executed before multiplication; both are
 executed before subtraction, which is executed
 before addition. This order can be changed by using
 parentheses; the contents of the parentheses are
 executed first.

PR 4 + 6/2
 7

PR (4 + 6)/2
 5

The use of parentheses is especially important when
 using operations such as RANDOM, SIN, TAN, etc.

PR RANDOM 2+3

is read by Logo as

PR RANDOM 5 (2 + 3)

and not:

PR (RANDOM2) + 3

Therefore, it is customary to write either:

PR RANDOM (2 + 3)

or better:

PR 3 + RANDOM 2

to avoid any confusion.

SCREENS, MODES AND PROMPTSSCREENS, MODES AND PROMPTSSCREENS, MODES AND PROMPTSSCREENS, MODES AND PROMPTS

When using your Sinclair Logo, you have two
 possible screen options:

TEXTSCREEN: 22 lines are usable. The screen
 scrolls as your printing goes off the 'page'.

GRAPHIC SCREEN: the upper 22 lines are available
 for your drawing and the printing of text, the lower
 two lines are available for ordinary printing.

Certain modes will produce different effects when
 you type.

LogoLogoLogoLogo modemodemodemode (direct mode): every instruction
 you give is interpreted and executed
 by Logo.

TOTOTOTO modemodemodemode (procedure writing): used for writing
 your own procedures.

EditEditEditEdit modemodemodemode (EDITOR): used for creating or
 modifying procedures.

Different prompts appear depending on the mode
 you are in.

LogoLogoLogoLogo modemodemodemode: the prompt ? appears at the
 beginning of every Logo line.
 TOTOTOTO modemodemodemode: the prompt > appears at the
 beginning of every screen line.
 EditEditEditEdit modemodemodemode: the prompt Ø (flashing) appears at
 the top left of the screen.

RECURSIONRECURSIONRECURSIONRECURSION Logo allows recursion and its use forms a powerful
 tool for the Logo programmer.

Recursion is said to occur when a procedure calls
itself. Each call to the procedure by recursion forms

 a recursive descent, as the number of nested
 procedures increases. Recursive ascent occurs when
 control passes upwards through the nest of
 procedures; following ENDENDENDEND or stop commands.

Consider the following example:

TO DOUBLE :START
 IF :START > 50 [STOP]
 PR :START
 DOUBLE :START * 2
 END

DOUBLE 5
 5

10
 20

40

This example illustrates two important points.

1 A limiting test has to be included if the recursive
descent is to be delimited. In the example the line IF

 :START > 50 [STOP] limits the program to three
 recursive calls.

2 Work can be performed during a recursive descent.
 In the example the line PR :START uses a variable
 whose value is being changed with each recursive
 call.

The next example shows how work can be
 performed recursive assent.

TO TREBLE :START
 IF :START < 80 [TREBLE :START * 3]
 PR :START
 END
 TREBLE 5
 135
 45

15
 5

Note: Logo can be considered clever in the manner
 with which it handles a recursive ascent. Not only is
 the correct return position located, but the local
 variables for each level are available to the user.

EXITING FROM LOGOEXITING FROM LOGOEXITING FROM LOGOEXITING FROM LOGO If you wish to leave Logo without turning off your
 ZX Spectrum, type the command BYE. Sinclair Logo
 can be restarted by using RUN. The workspace is
 returned intact.

Chapter 2Chapter 2Chapter 2Chapter 2
The turtleThe turtleThe turtleThe turtle
INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION The turtle is the name given to the little triangle

which appears when you use the graphics screen.
You can make it draw lines on your screen with its
pen by asking it to move from one point to another
- this is what turtle graphics is all about.

Every time you use a primitive related to the
movement of the turtle, the graphics screen
(including the turtle, unless instructed to remain
hidden) will appear.

The graphics screen is devoted to the turtle's field,
except for the two bottom lines where you and

 Logo exchange ideas. In Sinclair Logo the turtle
field is normally 256 'turtle steps' across and 175

 'turtle steps' high. The size of the turtle field can be
changed by the user if desired (see SETSCRUNCH

 below).

The graphics screen disappears each time you
 change to text or edit mode.

The primitives that refer to the turtle will now be
 detailed:
BACK nBACK nBACK nBACK n commandcommandcommandcommand
BK nBK nBK nBK n The turtle moves back n steps without changing its
 direction. (The turtle will move forward if n has a
 minus value.)

BK 20

BACKGROUND BACKGROUND BACKGROUND BACKGROUND operationoperationoperationoperation
BGBGBGBG Returns a number (0-7) representing the colour of
 the background.

The numbers of the colours are as follows:
 0 Black 4 Green
 1 Blue 5 Cyan (light blue)
 2 Red 6 Yellow
 3 Magenta 7 White

PRINT BACKGROUND
7

CLEAN Erases the graphics screen without changing the
 turtle's position.
 CLEARSCREEN CLEARSCREEN CLEARSCREEN CLEARSCREEN commandcommandcommandcommand
CS CS CSCS Erases the graphics screen, and moves the turtle to

 its original position at the centre of the screen.

DOT[xy] DOT[xy] DOT[xy] DOT[xy] commandcommandcommandcommand

Leaves a dot at the specified position, co-ordinates
 [x y]. The turtle does not move and no line is
 drawn.

Logo will return a message if you ask it to draw a
 dot outside the limits of the screen.

DOT[12 12]

FENCE FENCE FENCE FENCE commandcommandcommandcommand

Limits the turtle's movements to the screen
 boundaries. After using FENCE Logo will not allow
 you to move the turtle beyond the limits of the
 screen, neither will it allow you to FENCE a turtle
 which is already off the screen.

See WINDOW, WRAP

FENCE BK 1000

Turtle out of bounds

FORWARD n FORWARD n FORWARD n FORWARD n commandcommandcommandcommand
FD nFD nFD nFD n The turtle moves forward n steps without changing

 its direction. (The turtle will move backwards if n
 has a minus value.)

FD 20

HEADING HEADING HEADING HEADING operationoperationoperationoperation

Outputs a number between 0 and 359, showing
 the direction in which the turtle is facing. Logo
 follows the compass system where 0 is north (top of
 the screen), east 90, south 180 and west 270.
 When you start Logo, or after you type CS, the
 turtle's heading is 0.

CS
LEFT 1

 PR HEADING
 359

HIDETURTLE HIDETURTLE HIDETURTLE HIDETURTLE
HT HT HTHT Makes the turtle
 a turtle that is hi
 is visible.

HOME HOME HOME HOME

Moves the turtle
 origin [0 0]. If the
 line from the cur
 turtle's heading

SETPOS [50 1
 HOME

LEFT n LEFT n LEFT n LEFT n
LT nLT nLT nLT n The turtle pivots
 changing its pos

LT 90

PENCOLOUR PENCOLOUR PENCOLOUR PENCOLOUR
PCPCPCPC Returns a numb
 When you start y

PRINT PC

PENDOWN PENDOWN PENDOWN PENDOWN
PDPDPDPD Lowers the turtle
 it moves.

See also PENUP

270 West
0 North

90 East
180 South

 disap
dden w

 to the
 turtle

rent p
will alw
003

 n deg
ition.

er spe
our L

's pen

.

commandcommandcommandcommand
pear, though it will still draw;
ill draw faster than one that

commandcommandcommandcommand
 centre of the screen to its
's pen is down, it draws a
osition to the origin. The
ays become 0.

commandcommandcommandcommand
rees to the left without

operationoperationoperationoperation
cifying present pen colour.
ogo, the pencolour is 0.

commandcommandcommandcommand
 so that a line is drawn when

PENERASE PENERASE PENERASE PENERASE commandcommandcommandcommand
PEPEPEPE The turtle erases any previously drawn lines it

 passes over.

PENDOWN, PENUP or PENREVERSE cancel the
 effect of PENERASE.

FD 25
 PENERASE
 BK 50
PENREVERSE PENREVERSE PENREVERSE PENREVERSE commandcommandcommandcommand
pxpxpxpx Puts the reversing pen down: when the turtle

 moves, it draws where there aren't lines and erases
 where there are.

PENDOWN, PENUP or PENERASE cancel the
 reversing pen.

FD 25
 PENREVERSE
 BK 50
PENUP PENUP PENUP PENUP comcomcomcommandmandmandmand
pu pu pu pu Lifts the turtle's pen so that no line is drawn when it

 moves.

PENUP FD 50

POSITION POSITION POSITION POSITION operationoperationoperationoperation
pospospospos Returns the turtle's position as screen co-ordinates

 [xy]. See DOT.

RIGHT 90 FORWARD 5-0
 PRINT POSITION
 0 50
RIGHT n RIGHT n RIGHT n RIGHT n commandcommandcommandcommand
RTRTRTRT n The turtle pivots n degrees to the right without
 changing its position.

RT 90

SCRUNCH SCRUNCH SCRUNCH SCRUNCH operationoperationoperationoperation

Returns the aspect ratio, [x y], the ratio of the size
 of a vertical turtle step to the size of a horizontal
 one. See SETSCRUNCH.

SETBG n SETBG n SETBG n SETBG n commandcommandcommandcommand
Sets the background colour to the colour n: see

 BACKGROUND for the table of values for n.

SETBG 2

SETBORDER SETBORDER SETBORDER SETBORDER commandcommandcommandcommand
SETBR Sets the border colour to the colour n: see
 BACKGROUND for the table of values for n.

SETBR 2

SETHEADING n SETHEADING n SETHEADING n SETHEADING n commandcommandcommandcommand
SETH nSETH nSETH nSETH n Sets the heading of the turtle (turns it) so that it is
 facing in the direction indicated by the number of
 degrees n. When the turtle is in its original position
 (facing the top of the screen) its heading is 0.

SETPC n SETPC n SETPC n SETPC n commandcommandcommandcommand

Sets the turtle's pen colour to the colour n: see
 BACKGROUND for the table of values for n.
 Remember that in the SPECTRUM the INK colour
 (pencolour) is handled at a character area level and
 not at a pixel level. A line drawn in a new colour will
 therefore change the colour of all the lines in the
 character areas through which it passes.

SETPC 6

SETPOS [x y] SETPOS [x y] SETPOS [x y] SETPOS [x y] commandcommandcommandcommand

Given a list of two numbers (x and y coordinates),
 the turtle moves to that position. If the pen is down,
 the turtle leaves a trace.

FD 50
 RT 90

FD 50
 SETPOS [0 0]

SETSCRUNCH [X Y] SETSCRUNCH [X Y] SETSCRUNCH [X Y] SETSCRUNCH [X Y] commandcommandcommandcommand

Sets the aspect ratio to [X Y].

If your squares and circles look more like rectangles
 and ellipses, this command will change the scales
 on which your images are drawn.

The 'normal' Logo screen is [100 100].
 SETSCRUNCH [100 50] will halve the height of a
 drawing without affecting its width. SETSCRUNCH
 [50 50] will halve the width as well.

TO SQUASH
 SETSCRUNCH SE 100 :Y
 MAKE "Y:Y -10
 REPEAT 20 [FD 30 RT 18]
 END

MAKE "Y 100
 REPEAT 10 [SQUASH3 SETSCRUNCH
 [100 100]

SETX n SETX n SETX n SETX n commandcommandcommandcommand

Moves the turtle to the point n of the x-coordinate
 while keeping the same y-coordinate. If the pen is
 down it will draw a horizontal line.

SETY n SETY n SETY n SETY n commandcommandcommandcommand

Moves the turtle to the point n of the y-coordinate
 while keeping the same x-coordinate. If the pen is
 down it will leave a vertical line.

SHOWNP SHOWNP SHOWNP SHOWNP operationoperationoperationoperation

Outputs TRUE if the turtle is in SHOWTURTLE
 mode, FALSE if it is not.

SHOWTURTLE SHOWTURTLE SHOWTURTLE SHOWTURTLE commandcommandcommandcommand
STSTSTST Makes the turtle visible; see HIDETURTLE.

TOWARDS [x y] TOWARDS [x y] TOWARDS [x y] TOWARDS [x y] operatiooperatiooperatiooperationnnn

Returns the heading which would be necessary for
 the turtle to have, if it is to face towards the
 position [x y]. Note that the turtle is unaffected by
 using TOWARDS.

CS
 DOT [10 10]
 PR TOWARDS [10 10]
 45
WINDOW WINDOW WINDOW WINDOW commandcommandcommandcommand

Enables the turtle to move outside the screen area.
 The screen is like a window viewing only a small

portion in the centre of the entire field. When the
 turtle is in WINDOW mode, it will continue to obey
 instructions even if it cannot be seen.

The turtle may move up to 32767 steps in any
 direction from the centre.

See FENCE, WRAP.

CS
 WINDOW
 RT 45

FD 500
 PR POS

WRAP WRAP WRAP WRAP commandcommandcommandcommand
Makes the turtle's field wrap around the edges of

 the screen. When the turtle crosses a screen
 boundary, it immediately reappears on the opposite
 side.

See FENCE, WINDOW.

CS
 WRAP
 RT 45

FD 500
 PR POS

XCOR XCOR XCOR XCOR operationoperationoperationoperation

Returns the x-coordinate of the current position of
 the turtle.

YYYYCOR COR COR COR operationoperationoperationoperation

Returns the y-coordinate of the current position of
 the turtle.

Chapter 3
Words and lists

INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION Words and lists are objects in Logo. In this chapter
 we will look at the primitives which are useful for
 manipulating words and lists. A word is a series of
 characters.

Here are some samples of Logo words:

Hello
 X

XYZ
 XYZ.12.3
 MICKEYMOUSE
 MICKEY.MOUSE

Good-bye!

Each character in a word is called an element.
 MICKEYMOUSE has 11 elements and
 MICKEY.MOUSE has 12. The limits of a word are
 marked by spaces, or by one of the following signs:
 before a word
 : or" immediately preceding a word (ie, no
 space between : or" and the word)
 after a word
 [] () <> + - * /

"followed by a space is known as an empty
 word.

To treat any of these characters as a normal
 character, put a / (backslash) (SYS D) before it.
 This tells Logo to interpret the characters
 that follows literally as a character, rather than
 keeping some special meaning it might have. For
 instance, suppose you wanted to use 3[A]B as a
 single word. You must type 3 \ [A \] B in order to
 avoid Logo's usual interpretion of the brackets as
 the envelope around the list. Alternatively, you can
 give Logo the instruction shown over page.

PR "TOPSY \ TURVEY
 TOPSY TURVEY

(a single word containing a space)

A list is composed of words, other lists or both,
 written within square brackets.

Here are some examples of Logo lists:

[HELLO, AGAIN!]
 [X2 + Y2 = 223
 [MICKEYMOUSE]
 [THIS IS A LIST [CONTAINING A
 LIST [[]]]
 []

[THIS IS A LIST [CONTAINING
 A LIST][]]

This contains six elements:
 1 : THIS
 2 : IS
 3 : A

4 : LIST
 5 : [CONTAINING A LIST]
 6 : []

Element 6 is an empty list.

The primitives that refer to words and lists will now
 be detailed:

ASCIASCIASCIASCII character I character I character I character operationoperationoperationoperation

Returns the ASCII code for the given character. See
 CHAR.

A list of codes is given in Appendix 2.

Try:

PR ASCII "A
 65

PR ASCII "B
 66

TO SECRETCODE :WD
 IF EMPTYP :WD [OUTPUT CHAR 32]
 OUTPUT WORD CODE FIRST :WD SE-
 CRETCODE BF : WD
 END

TO CODE :LETTER
 MAKE "NUM (ASCII :LETTER) + 3
 IF :NUM > ASCII "Z [MAKE "NUM
 :NUM – 26]
 OUTPUT CHAR :NUM
 END

PRINT SECRETCODE "CAT
 FDW

BUTFIRST object BUTFIRST object BUTFIRST object BUTFIRST object operationoperationoperationoperation
BF objectBF objectBF objectBF object Returns everything EXCEPT the first element of the
 specified object (word or list). BUTFIRST of the
 empty word or list returns an error.

PR BUTFIRST [QUEEN ELIZABETH]
 ELIZABETH

PR BF "FUNNY
 UNNY

PR BF [FUNNY]
Note that there is no output

PR BF [3

 BF doesn't like [] as input

TO TRIANGLE :OBJECT
 IF EMPTYP :OBJECT [STOP3
 PRINT :OBJECT
 TRIANGLE BF :OBJECT
 END
 TRIANGLE "TRIANGLE
 TRIANGLE
 RIANGLE
 IANGLE
 ANGLE
 NGLE
 GLE
 LE

E

TRIANGLE [MANY GOOD PEOPLE
 LAUGH]
 MANY GOOD PEOPLE LAUGH
 GOOD PEOPLE LAUGH
 PEOPLE LAUGH
 LAUGH

BUTLAST objectBUTLAST objectBUTLAST objectBUTLAST object operationoperationoperationoperation
BL objectBL objectBL objectBL object Returns everything EXCEPT the last element of the
 specified object (word or list).

PR BUTLAST [QUEEN ELIZABETH3
 QUEEN

PR BL "FUNNY
 FUNN

PR BL [FUNNY]

Note that there is no output

PR BL []

BL doesn't Like [] as input

TO BOAST :WD
 PR SENTENCE [YOU ARE3 :WD
 PR SENTENCE [I AM3 WORD
 BUTLAST :WD "IER
 END

BOAST "PRETTY
 YOU ARE PRETTY
 I AM PRETTIER

CHAR n CHAR n CHAR n CHAR n operationoperationoperationoperation

Returns the character whose ASCII code is n, an
 integer between 32 and 165. You'll receive an Logo
 message if n is not a valid ASCII code. A list of codes
 is given in Appendix 2.

COUNT object COUNT object COUNT object COUNT object operationoperationoperationoperation

COUNT returns the number of elements in the
 specified object (word or list).

See ITEM.

PR COUNT [1 2 3 4 5 6 7]
 7

PR COUNT [HOW MANY ROADS MUST
 A MAN WALK DOWN?]
 8

PR COUNT "PEACOCK
 7

MAKE "PERSON [HEAD ARMS
 LEGS BODY]
 PR COUNT :PERSON
 4

TO PICK:INFO
 PRITEM (1 +RANDOM COUNT :INFO)
 :INFO
 END

PICK:PERSON
 ARMS

EMPTYP object EMPTYP object EMPTYP object EMPTYP object operationoperationoperationoperation

Returns TRUE if the Logo object is empty;
 otherwise FALSE.

MAKE "A []
 PR EMPTYP :A
 TRUE
 MAKE "A 1
 PR EMPTYP :A
 FALSE

TO LIFE :PERSON :ACTION
 IF EMPTYP :PERSON [STOP]
 PR SENTENCE FIRST :PERSON
 FIRST :ACTION
 LIFE BF :PERSON BF :ACTION
 END
 LIFE [ALAN LIZ FIONA TIM]
 [SINGS LAUGHS WHISTLES SHOUTS]
 ALAN SINGS
 LIZ LAUGHS
 FIONA WHISTLES
 TIM SHOUTS

TO REVPRINT :THING
 IF EMPTYP :THING [PR [] STOP]
 TYPE LAST :THING
 IF LISTP :THING [TYPE CHAR 32]
 REVPRINT BL :THING
 END

REVPRINT "ELEPHANT
 TNAHPELE

REVPRINT "OTTO
 OTTO

EQUALP objecti object2 EQUALP objecti object2 EQUALP objecti object2 EQUALP objecti object2 operationoperationoperationoperation

Returns TRUE if object and object2 are equal
 numbers, the same word or identical lists.

PR EQUALP "MARY FIRST [MARY
 JANE]
 TRUE

PR EQUALP 10 21/3
 FALSE

TO PRESENCE :OBJECT1 :OBJECT2
 IF EMPTYP :OBJECT2 [OUTPUT
 "FALSE]
 IF EQUALP :OBJECT1 FIRST
 :OBJECT [OUTPUT "YES]
 OUTPUT PRESENCE :OBJECT1 BF
 :OBJECT2
 END

PRINT PRESENCE "E "HELEN
 YES

PR PRESENCE 3 3
 YES

PR PRESENCE "HELLO "GREETINGS
 FALSE

FIRST object FIRST object FIRST object FIRST object operationoperationoperationoperation

Returns the first element of the word or list. FIRST
 of a word is a character, FIRST of a list may be a
 word or a list.

PR FIRST "HAPPY.NEW.YEAR
 H

PR FIRST [HAPPY NEW YEAR3
 HAPPY

TO SPELL :WD
 IF EMPTYP :WD [STOP]
 PR FIRST :WD
 SPELL BF :WD
 END

SPELL "MOUSE
 M

O
U
S
E

FPUT object list FPUT object list FPUT object list FPUT object list operationoperationoperationoperation
Returns a new list which is formed by putting the

 object at the beginning of the list (First PUT).

PR FPUT "EENY [MEENY MINEY M0]
 EENY MEENY MINEY MO

ITEM n ITEM n ITEM n ITEM n operation operation operation operation
Outputs the nth ITEM of a list when given the list

 and an input number n, provided that the list
 contains n or more items.

PR ITEM 4 [IS THE SKY BLUE?]
 BLUE?

PR ITEM 6 [EENY MEENY MINEY MO]
 Not enough items in [EENY MEE-
 NY MINEY MO]]]]

LAST object LAST object LAST object LAST object opeopeopeoperationrationrationration
 Returns the last element of a list or the last
 character of a word.

PR LAST [APPLES PEACHES PEARS]
 PEARS

TO REVERSE.WORD :WD
 IF EMPTYP :WD [STOP]
 PRINT LAST :WD
 REVERSE.WORD BUTLAST :WD
 END

REVERSE.WORD "CHOCOLATE
 E

T
A
L
0
C
0
H

LISLISLISLIST objecti1 object2 T objecti1 object2 T objecti1 object2 T objecti1 object2 operationoperationoperationoperation
(LIST object1 object2(LIST object1 object2(LIST object1 object2(LIST object1 object2
... objectn) ... objectn) ... objectn) ... objectn) Returns a list where the elements are

 object1, object2 etc.

MAKE "LINE LIST [ONE] [TW0]
 PR :LINE
 [ONE3 [TW0]

MAKE "LINE (LIST [ONE] [TW0]
 [THREE])

PR :LINE
 ONE3[TW03[THREE]

LISTP object LISTP object LISTP object LISTP object operationoperationoperationoperation

Returns TRUE if object is a list, otherwise FALSE.
 Note: an empty list is no longer a list; it is taken to
 bean empty word.

PR LISTP [6]
 TRUE

PR LISTP 6
 FALSE

PR LISTP [CATS AND DOGS]
 TRUE

PR LISTP BF [CATS]
 FALSE

LPUT object list LPUT object list LPUT object list LPUT object list operationoperationoperationoperation

Returns a new list which places the object at the
 End of the list (LastPUT).

PRINT LPUT "GERBIL [HAMSTER
 PIG]
 HAMSTER PIG GERBIL
 PRINT LPUT [CAT MOUSE] [FAT
 HOUSE]
 FAT HOUSE [CAT MOUSE]

MEMBERP object list MEMBERP object list MEMBERP object list MEMBERP object list operationoperationoperationoperation

Returns TRUE if the object is an element of the list;
 otherwise FALSE.

PR MEMBERP "L [AB L Y Z]
 TRUE

As in this case [L] is itself a list, although its sole
 element is an L.

PR MEMBERP "L [AB [L3 Y Z]
 FALSE

PR MEMBERP "PIN [S PIN DLE]
 TRUE

PR MEMBERP "PIN [SPINDLE]
 FALSE

TO VOWEL :LETTER
 OUTPUT MEMBERP :LETTER [A E I
 0 U]

END

PR VOWEL "I
 TRUE

PR VOWEL "P
 FALSE

NUMBERP object NUMBERP object NUMBERP object NUMBERP object operationoperationoperationoperation
 Returns TRUE if the object is a number; otherwise

FALSE.

PR NUMBERP 3

 TRUE

PR NUMBERP [33
 FALSE

The object is the list [3], hence it is not a number in
 Logo terms.

PR NUMBERP "12:00
 FALSE

Here, the object is a word.

SENTENCE object1 object2 SENTENCE object1 object2 SENTENCE object1 object2 SENTENCE object1 object2 operationoperationoperationoperation
(SE object 1 (SE object 1 (SE object 1 (SE object 1
object2 ... objectnobject2 ... objectnobject2 ... objectnobject2 ... objectn) Returns a list composed of the objects in the input.

PR SENTENCE "GREEN "APPLES
 GREEN APPLES

PR SE [GREEN] [APPLES]
 GREEN APPLES

TO SCHOOL.LESSON :NAME
 PR SE :NAME [PROMISES3
 PR SE :NAME [WILL NOT INTER
 RUPT THE TEACHER]
 END

SCHOOL.LESSON "CLAUDINE
 CLAUDINE PROMISES
 CLAUDINE WILL NOT INTERRUPT
 THE TEACHER

Remember that same primitives require a list, such
 as SETPOS [x y], as their input. It is illegal in Logo to
 enter:

SETPOS [:A :B]

but you use instead:

SETPOS SE :A :B

WORD word1 word2 WORD word1 word2 WORD word1 word2 WORD word1 word2 operationoperationoperationoperation
(WORD word1 word2...(WORD word1 word2...(WORD word1 word2...(WORD word1 word2...
wordn) wordn) wordn) wordn) Returns a word consisting of the inputs. WORD
 does not take a list as an input.

PR WORD "FRI "DAY
 FRIDAY

PR (WORD "ASTON "ISH "ING)
 ASTONISHING

PR WORD "ASTON [ISH]

WORD doesn't like [ISH] as
 Input

TO TRIPLE :X
 OUTPUT WORD :X WORD :X :X
 END

PR TRIPLE "HA
 HAHAHA

WORDP object WORDP object WORDP object WORDP object operationoperationoperationoperation
Returns TRUE if the object is a word; otherwise

FALSE.

 PR WORDP "123ABC
 TRUE

PR WORDP 3
 TRUE

PR WORDP [ROCKET]
 FALSE

PR WORDP "
 TRUE

PR WORDP []
 FALSE

This chart compares four primitives that combine
 words and lists:

operationoperationoperationoperation input 1input 1input 1input 1 input 2input 2input 2input 2 output output output output
FPUT "COW "HORSE Logo message
LIST "COW "HORSE [COW HORSE]
LPUT "COW "HORSE Logo message
SENTENCE "COW "HORSE [COW HORSE]

FPUT "LOGO [IS WONDERFUL] [LOGO IS WONDERFUL]
LIST "Logo [IS WONDERFUL] [LOGO [IS WONDERFUL]]
LPUT "LOGO [IS WONDERFUL] [IS WONDERFUL LOGO]
SENTENCE "LOGO [IS WONDERFUL] [LOGO IS WONDERFUL]

FPUT [THE FOX] [LOOKS AT FIDO] [[THE FOX] LOOKS AT FIDO]
LIST [THE FOX] [LOOKS AT FIDO] [[THE FOX][LOOKSATFIDO]]
LPUT [THE FOX] [LOOKS AT FIDO] [LOOKS AT FIDO [THE FOX]]
SENTENCE [THE FOX] [LOOKS AT FIDO] [THE FOX LOOKS AT FIDO]

FPUT "COMPUTERS [] [COMPUTERS]
LIST "COMPUTERS [] [COMPUTERS[]]
LPUT "COMPUTERS [] [COMPUTERS]
SENTENCE "COMPUTERS [] [COMPUTERS]

Chapter 4
Variables
INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION In Logo, variables are created either by using the

primitive MAKE or by assigning undefined inputs to
a procedure name. A variable can be thought of as
a container for a Logo object. This object is known
as the variable's value.

MAKE name objectMAKE name objectMAKE name objectMAKE name object Assigns the value 'object' to the variable 'name'.
You can also consider a variable as a symbol (or
pointer) referring to the object.

Assigning a single number:

MAKE "AGE 20
PR :AGE
20

Assigning a list of numbers:

MAKE "PRICES [10 20 30]
PR :PRICES
10 20 30

Assigning a word:

MAKE "ANIMAL "FROG
PR :ANIMAL

 FROG

Assigning a list:

MAKE "COLOURS [RED WHITE BLUE]
PR :COLOURS
RED WHITE BLUE

Assigning an input list using RL:

TO WEATHER
PR [HOW IS THE WEATHER TODAY?]
MAKE "RESPONSE RL

IF :RESPONSE = CRAINY] [PR [I HOPE
 IT STOPS SOON]
 IF :RESPONSE = [SUNNY] CPR [GREAT!
 I HOPE IT CONTINUES]
 END

WEATHER
 HOW IS THE WEATHER TODAY?
 SUNNY
 GREAT! I HOPE IT CONTINUES

WEATHER
 HOW IS THE WEATHER TODAY?
 RAINY
 I HOPE IT STOPS SOON

It is also possible to assign a value to a variable that
 is itself a value of another variable thereby building
 a 'tree'.

MAKE "ANIMAL "CAT
 PR :ANIMAL
 CAT

MAKE :ANIMAL "KITTEN
 PR :CAT
 KITTEN

(See Chapter 1 for a discussion on global and local
 variables.)

NAMEP object NAMEP object NAMEP object NAMEP object operationoperationoperationoperation

Returns TRUE if the object has a value; otherwise
FALSE.

PR NAMEP "FRUIT

 FALSE

MAKE "FRUIT "APPLE

PR :FRUIT
 APPLE

PR NAMEP "FRUIT
 TRUE

THING name THING name THING name THING name ooooperationperationperationperation
Returns the contents of name. THING "X is the

 same as :X; but whereas THING :X is legal, ::X is
 not!

MAKE "MARY "HAPPY
 MAKE "HAPPY [A BIRTHDAY PARTY]

PRINT THING "MARY
 HAPPY

PRINT :MARY
 HAPPY

PRINT THING :MARY
 A BIRTHDAY PARTY

TO INC :X
 MAKE :X 1 + THING :X
 END

MAKE "TOTAL 7
 PRINT :TOTAL
 7

INC "TOTAL
 PR :TOTAL
 8

INC "TOTAL
 PR :TOTAL
 9

Chapter 5
Arithmetic operations

INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION Logo understands both integers and decimal
 fractions.
 6 is an integer
 .43 is a decimal fraction.

Logo permits you to carry out many arithmetic
 operations. You may add, subtract, multiply or
 divide; you may also find arctangents, sines,
 cosines, tangents and square roots, and test
 whether a number is greater than, less than or
 equal to another number.

Certain arithmetic operations always return
 integers: INT, RANDOM, ROUND.

PR DIV 7 2
 3.5

PR 7/2
 3.5

PR 4.5 + 5.5
 10

PR 6 + 4
 10

Addition, subtraction, multiplication, and division
 can be used infix form. This means that the
 operator (+ - * /) goes between the inputs.
 Addition, division and multiplication can also be
 used in prefix form in which case SUM, DIV or
 PRODUCT are followed by the two inputs:

PR PRODUCT 4 4
 16

The primitive EQUALP, described in Chapter 2, is
 often used with arithmetic operations. The INFIX
 operation = is equivalent to EQUALP.

We will now list the primitives concerned with
 arithmetic.

ARCCOS n ARCCOS n ARCCOS n ARCCOS n operationoperationoperationoperation

Returns the value, in degrees, of the arccosine of n.

PR ARCCOS 0.45
 63.256316

ARCCOT n ARCCOT n ARCCOT n ARCCOT n operationoperationoperationoperation

Returns the value, in degrees, of the arc cotangent
 of n.

PR ARCCOT 1
 45

ARCSIN n ARCSIN n ARCSIN n ARCSIN n operationoperationoperationoperation
Returns the value, in degrees, of the arcsine of n.

PR ARCSIN 0.45

 26.743684

ARCTAN n ARCTAN n ARCTAN n ARCTAN n operationoperationoperationoperation

Returns the value, in degrees, of the arctangent
 of n.

PR ARCTAN 1
 45

Arcsines and arccosines may be found as follows:

TO ARCSINE :X
 OUTPUT ARCTAN :X /
 (SORT 1- :X * :X)
 END

TO ARCCOSINE :X
 OUTPUT ARCTAN
 SQRT 1 -
 :X * :X)/:X

COSINE n COSINE n COSINE n COSINE n operationoperationoperationoperation
COS nCOS nCOS nCOS n Returns the value, in degrees, of the cosine of n

PR COS 60
 0.5
 PR COS 30
 .8660254

COTANGENT n COTANGENT n COTANGENT n COTANGENT n operationoperationoperationoperation
COT nCOT nCOT nCOT n Returns the value, in degrees, of the cotangent of
 n.

PR COT 45

DIV a b DIV a b DIV a b DIV a b operationoperationoperationoperation

Returns the quotient obtained by dividing a by b.

PR DIV 24 2
 12

PR DIV -24.24 2
 -12.12

PR DIV -25 0
 Can't divide by zero

INT n INT n INT n INT n operationoperationoperationoperation

Returns the INTeger portion of n by removing any
 decimal fractions; see ROUND.

PR INT 5.2129
 5

PR INT 5.5
 5

PR INT -5.5
 -5

Numbers may be tested to see if they are integers:

TO INTP :N
IF NOT NUMBERP :N [OP[NOT A N
UMBER]]

 OP :N = INT :N
 END

PR INTP 17
 TRUE

PR INTP 100/8
 FALSE

PR INTP "ONE
 NOT A NUMBER

PRODUCT a b PRODUCT a b PRODUCT a b PRODUCT a b operationoperationoperationoperation
(PRODUCT a b... n) (PRODUCT a b... n) (PRODUCT a b... n) (PRODUCT a b... n) Returns the product of the inputs. It is equivalent to

 the INFIX operation *. If PRODUCT has more than
 two inputs, parentheses must appear around
 PRODUCT and its inputs.

PR PRODUCT 5 5
 25

PR (PRODUCT 5 5 2)
 50

TO SQUARE :X
 PR PRODUCT :X :X
 END

SQUARE 2
 4

TO CUBE :X
 PR (PRODUCT :X :X :X)
 END

CUBE 2
 8
RANDOM n RANDOM n RANDOM n RANDOM n operation operation operation operation

If n is a positive integer, returns a random number
 between 0 and (n-1).

Random 6 could output 0,1,2, 3,4 or 5

TO DICE
 OUTPUT 1 + RANDOM 6
 END

PR DICE
 3

Note carefully that

1 + RANDOM 6

is used in this example, because

RANDOM 6+1

does not give the correct answer. Alternatively
 brackets can be used to 'collect' true correct terms
 together:

(RANDOM 6) + 1

REMAINDER a b REMAINDER a b REMAINDER a b REMAINDER a b operationoperationoperationoperation

Returns the remainder left when a is divided by b.

PR REMAINDER 16 4
 0

PR REMAINDER 16 5
 1

TO EVENP :NUM
 OUTPUT 0 = REMAINDER :NUM/2
 END

PRINT EVENP 5
 FALSE

PR EVENP 2
 TRUE

The following procedure tells whether the first
 input is a divisor of the second:

TO DIVISORP :A :B
 OP 0 = REMAINDER :B :A
 END

PR DIVISORP 3 5
 FALSE

ROUND n ROUND n ROUND n ROUND n operoperoperoperationationationation
Returns n rounded to the nearest integer. Compare

 these examples with INT.

PR ROUND 5.219
 5

PR ROUND 5.5
 6

PR ROUND -5.5
 -6

SINE n SINE n SINE n SINE n operationoperationoperationoperation
SIN n SIN n SIN n SIN n Returns the value, in degrees, of the sine of n.

PR SIN 30

 0.5

SQRT n SQRT n SQRT n SQRT n operationoperationoperationoperation

Returns the square root of n; n must be positive.

PR SORT 49
 7

PR SQRT 4567
 67.5796

The procedure DISTANCE takes any two positions
 as inputs, and outputs the distance between them:

TO DISTANCE :POS1 :POS2
 OP SQRT SUM SQ (FIRST
 :POS1) -
 (FIRST :POS2) SQ (LAST
 :POS1) -
 (LAST :POS2)
 END

TO SQ :N
 OP :N * :N

END

PR DISTANCE [-70 103 [50 60]
 130

SUM a b SUM a b SUM a b SUM a b operationoperationoperationoperation
(SUM a b...n)(SUM a b...n)(SUM a b...n)(SUM a b...n) Returns the sum of the inputs a b. It gives the same
 result as IN FIX operation +. If SUM has more than
 two inputs, parentheses must appear around SUM
 and its inputs
.

PR SUM 5 2l
7

PR (SUM 523)
 10

TANGENT n TANGENT n TANGENT n TANGENT n operationoperationoperationoperation
TAN n Returns the value, in degrees, of the tangent of n.

PR TAN 50

 1.1917536

INFIX OPERATIONSINFIX OPERATIONSINFIX OPERATIONSINFIX OPERATIONS Avoid confusion between a negative number and
 the INFIX operation - (subtraction). It is good
 practice to put a space both before and after the
 sign unless you are giving a negative number as
 input. Examine the examples carefully!

A word is usually separated from the element which
 comes before, and that which comes after, by
 spaces.

There are certain other delimiters:
 []() = < > + - * /

a + ba + ba + ba + b INFIX operationINFIX operationINFIX operationINFIX operation
plus Returns the sum of the inputs a and b.

PR 5 + 2

 7

PR-5+2
 -3

aaaa----b bbb INFIX operationINFIX operationINFIX operationINFIX operation
minus Returns the difference between the inputs.

PR 7 – 1
 6

PR-7-1
 -8

PR -7 - -2
 -5

a * ba * ba * ba * b INFIX operationINFIX operationINFIX operationINFIX operation
Returns the product of a and b (a * b).

PR 6 * 2

 12

PR 6 * -2
 -12

PR 2 + 3 * 4
 14

PR (2 + 3) * 4
 20

a / ba / ba / ba / b INFIX operationINFIX operationINFIX operationINFIX operation
Returns the dividend of a and b (a divided by b).

PR 6 / 6

 1

PR-6/6
 -1

PR 6 / 0
 Can't divide by zero

a < ba < ba < ba < b NFIX operationNFIX operationNFIX operationNFIX operation
Returns TRUE if a is less than b; otherwise FALSE.

PR 2 < 3

 TRUE

PR 3 < 3
 FALSE

PR 3 < "TOTAL
 < doesn't Like TOTAL as input

a > ba > ba > ba > b NFIX operationNFIX operationNFIX operationNFIX operation
Returns TRUE if a is greater than b; otherwise

 FALSE.

PR 4 > 3
 TRUE
a = ba = ba = ba = b IN FIX operationIN FIX operationIN FIX operationIN FIX operation

Returns TRUE if a is equal to b, whether the inputs
 are words, lists or numbers; otherwise FALSE.
 Equivalent to the PREFIX operation EQUALP.

PR 80 = 100 - 20
 TRUE

PR 80 = 100 -20
 FALSE
 You don't say what to do
 with –20

PR 80 = (100 - 20)
 TRUE

Chapter 6
Defining and editing
INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION

There are two ways of defining procedures. The
usual method is to use the edit mode, ie, the Logo
Editor, although the use of the TO mode is perfectly
acceptable when defining simple procedures. The
advantage of using the Editor is of course that you
can edit any mistakes you make immediately.

EDIT MODEEDIT MODEEDIT MODEEDIT MODE
EDIT proceduresEDIT proceduresEDIT proceduresEDIT procedures
ED proceduresED proceduresED proceduresED procedures To enter edit mode, type EDIT or ED followed by

the name, or list of the procedures to be edited.

?ED "SPI

If you have not defined the procedure, your screen
will look like this:

TO SPI

LOGO EDITOR © SOLI / LCSI C

If you have already defined the procedure SPI, your
screen might read:

TO SPI :SIDE :ANGLE

 FD :SIDE
 RT :ANGLE
 SPI :SIDE + 5 :ANGLE
 END

LOGO EDITOR © SOLI / LCSI C

If you type ED or EDIT, and do not follow it with
anything, Logo will bring you whatever was last in
the Editor. ED [] or EDIT [] will always bring you an
 empty Editor.

When in the edit mode the prompt character ? does

 not appear. Instead, the cursor shows where you
 are typing; it can be moved anywhere in the text by

using the special keys listed below.
 Characters can be inserted or deleted.

When you press the ENTER key, the cursor moves
 to the next line and waits for you to type. A new
 line is inserted if a line is already there.

A space or a letter is inserted wherever you type
 one or the other.

Logo does not execute instructions when in edit
 mode.

While in edit mode, you may define one, or more,
 procedures. Each procedure must have its own title
 line - TO, procedure name, inputs - and its own
 END line.

EDITING KEYSEDITING KEYSEDITING KEYSEDITING KEYS Note: CAPS refers to the CAPS SHIFT key.
 SYS refers to the SYMBOL SHIFT key.
 Keys must be pressed simultaneously.
Moving the cursor
CAPS 5 Moves cursor one character to left.
CAPS 6 Moves cursor one line down.
CAPS 7 Moves cursor one line up.
CAPS 8 Moves cursor one character to right.
CAPS 0 Deletes one character to left.

E MODE CAPS 5 Moves cursor to beginning of line.
E MODE CAPS 6 Moves cursor to end of screen.
E MODE CAPS 7 Moves cursor to beginning of screen.
E MODE CAPS 8 Moves cursor to end of line.

E MODE B Moves cursor to beginning of text.
E MODE E Moves cursor to end of text.

Deleting and inserting
E MODE Y Deletes the line from the position of the cursor
 onwards and saves it.
E MODE R Enters the 'saved line' at the position of the cursor.

Scrolling If your text is longer than one screen page, scrolling
 allows you to move from one page to the next or to
 a previous one.

SYS S Tells Logo to stop scrolling; press any key to make it
 start again.

E MODE P Moves cursor to previous page.
E MODE N Moves cursor to next page.

EXITING FROM EDIT MODEEXITING FROM EDIT MODEEXITING FROM EDIT MODEEXITING FROM EDIT MODE

You have two options when leaving edit mode. If
 you wish Logo to incorporate the modifications you
 have just made, use EMODEC. If you don't wish to
 modify, use CAPS BREAK/SPACE.

E MODE C Press CAPS SHIFT and SYS simultaneously until the
 E appears in the lower right corner of the screen.
 Let go of both keys and press C. Logo will
 incorporate all the modifications you have made
 and tell you which procedures have been defined
 during that editing session.

CAPS BREAK/SPACE Press CAPS and BREAK/SPACE simultaneously.
 Logo will leave the Editor and ignore any changes
 you have made.

When outside edit mode, you may use any of the
 editing keys as long as you remain within one Logo
 line.
EDNS name EDNS name EDNS name EDNS name commandcommandcommandcommand
EDNS (name list]EDNS (name list]EDNS (name list]EDNS (name list] Allows you to edit names and their values. With no
 inputs, Logo will list all variables and their values.
 With an input, Logo will list all the variables named.
 In leaving the Editor, Logo will interpret all the
 MAKE commands you have just typed so that they
 contain their new values.

EDNS

Your screen will show

MAKE "COLOURS [RED WHITE AND
 BLUE]
 MAKE "NAMES CTOM DICK AND
 HARRY3
 MAKE "NUMBER 55

Edit the values

MAKE "COLOURS [ORANGE AND PINK]
 MAKE "NAMES "CLAUDINE
 MAKE "NUMBER 16

Enter E mode and press C to leave the Logo Editor.
 Now type

PONS
 MAKE "COLOURS [ORANGE AND PINK]
 MAKE "NAMES "CLAUDINE
 MAKE "NUMBER 16

TO MODE TO MODE TO MODE TO MODE commandcommandcommandcommand
TO name input1 ... inputnTO name input1 ... inputnTO name input1 ... inputnTO name input1 ... inputn

TO mode enables you to define a procedure of your
 own. To enter TO mode, type TO followed by the
 (unique) name of your procedure.

?TO SQUARE :SIDE
 >REPEAT 4 CFD :SIDE RT 90]
 >END
 SQUARE Defined

?

TO tells Logo to enter the TO mode. Logo does not
 carry out instructions when in TO mode; it
 remembers them. It indicates you are defining a
 procedure, with a given name and specified inputs.

The prompt changes from ? to >.
 END must be the only word on the last line.

If you decide to abandon a procedure you have
 started, press CAPS BREAK/SPACE. To change the
 definition of a procedure you may either:
 use the ERASE procedure and redefine the
 procedure,
 or:
 enter Edit mode and use the Logo Editor.

END END END END END has a special status. END is required when
 defining a procedure. It tells Logo that you have |
 finished defining the procedure, and it must be by
 itself on the last line.

You must use END to separate procedures when
you define more than one in the Editor, but it is not
necessary to define the END of the last procedure.

Chapter 7
Conditional expressions and
flow of control
INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION Within a procedure, Logo reads and carries out
 your instructions line by line. If one of your
 instructions is a subprocedure, Logo will execute all
 the commands in that subprocedure before going
 on to the next command of the superprocedure.

The order in which Logo reads and follows your
 instructions can be modified; let's see how.

Conditional instructions tell Logo to execute a
 particular action if a particular condition is true.

Repeat instructions tell Logo to execute a list one or
 more times.

The STOP instruction tells Logo to STOP the
 current procedure without continuing to the END
 but to continue with the next part of the
 superprocedure.

BYE BYE BYE BYE commandcommandcommandcommand

Exits from Logo and returns control to BASIC.
 Note: Logo can be restarted by typing RUN.

IF pred instructionlist1 instructionlist2 IF pred instructionlist1 instructionlist2 IF pred instructionlist1 instructionlist2 IF pred instructionlist1 instructionlist2 command or operationcommand or operationcommand or operationcommand or operation

The first input to IF is a predicate, or logical
 operation, that IF tests. Predicates are operations
 that return TRUE or FALSE. If the predicate is TRUE,
 instructionlisti is executed. If the predicate is
 FALSE, instructionlist2 is executed if it is present.

The procedures CHOOSE and CHOOSE1 show the
 use of IF as a command, firstly with two inputs and
 secondly with three:

TO CHOOSE
 IF 0 = RANDOM 3 [OP "YES]
 OP "NO
 END

PR CHOOSE
 YES

TO CHOOSE1
 IF 0 = RANDOM 3 [OP "YES][OP "No]
 END

PR CHOOSE1
 NO

CHOOSE2 shows the use of IF as an operation:

IF as an OPERATIONOPERATIONOPERATIONOPERATION
 TO CHOOSE2

OP IF 0 = RANDOM 3 ["YES3] ["N0]
 END

PR CHOOSE2
 YES

OUTPUT object OUTPUT object OUTPUT object OUTPUT object commandcommandcommandcommand
OP objectOP objectOP objectOP object This primitive, like STOP, tells Logo to STOP the

 current procedure without continuing to the END.
 But, unlike STOP, the OUTPUT primitive passes its
 object back to the calling procedure for possible
 use.

A procedure that terminates during execution with
 END acts as a command procedure, whereas a
 procedure terminating with OUTPUT acts as an
 operation.

TO BIRTHDAY.SONG
 OP [HAPPY BIRTHDAY]
 END

PR SE BIRTHDAY.SONG [TO YOU]
 HAPPY BIRTHDAY TO YOU

TO MEAN :X :Y
 OUTPUT (:X + :Y)/2
 END
 PR MEAN 6 3
 4.5

TO DECIDE :LETTER :WD
 IF EMPTYP :WD [OUTPUT "FALSE]
 IF EQUAL- :LETTER FIRST :WD
 [OP "TRUE] [OP DECIDE :LETTER
 BF :WD]
 END

PR DECIDE "H "HOUSE
 TRUE
 PR DECIDE "X "HOUSE
 FALSE

REPEAT n instructionlist REPEAT n instructionlist REPEAT n instructionlist REPEAT n instructionlist commandcommandcommandcommand
Repeats a list of instructions n times; n must be

 positive; a decimal fraction is truncated to an
 integer.

REPEAT 4 [FD 40 RT 90]
 REPEAT 2 [PR [HIP HIP HOORAY!]]
 REPEAT 360 [FD 1 RT 1]

RUN instructionlist RUN instructionlist RUN instructionlist RUN instructionlist commandcommandcommandcommand

With a Logo list as input, RUN executes the list as a
 Logo line.

RUN [PRINT [GOOD MORNING]]
 GOOD MORNING

RUN LIST "PRINT [GOOD MORNING]
 GOOD MORNING

MAKE "ORDER "PRINT
 MAKE "INPUT [GOOD MORNING]

RUN LIST :ORDER :INPUT
 GOOD MORNING

TO CALCULATE
 PR RUN READLIST
 END

CALCULATE
 3+3
 6

CALCULATE
 42 = 7 * 8

FALSE

CALCULATE
 REMAINDER 12 5
 2

TO MAP :COM :LIS
 IF EMPTYP :LIS [STOP]
 RUN LIST :COM FIRST :LIS
 MAP :COM BF :LIS
 END

TO SQUARE :SIDE
 REPEAT 4 [FD :SIDE RT 90]
 END

MAP "SQUARE [10 20 30 40 50]

STOP STOP STOP STOP commandcommandcommandcommand

Stops the execution of the procedure currently
 running and returns control to the procedure which
 called it.

TO REDUCE :OBJ
 IF EMPTYP :OBJ [STOP]
 PRINT :OBJ
 REDUCE BL :OBJ
 END

REDUCE "CHOCOLATE
 CHOCOLATE
 CHOCOLAT
 CHOCOLA
 CHOCOL
 CHOCO
 CHOC
 CHO
 CH

C

TO INCREASE :OBJ
 IF EMPTYP :OBJ [STOP]
 INCREASE BL :OBJ
 PR :OBJ
 END

INCREASE "CHOCOLATE
 C

CH
 CHO
 CHOC
 CHOCO
 CHOCOL
 CHOCOLA
 CHOCOLAT
 CHOCOLATE

TO ALTERNATE :OBJ
 IF EMPTYP :OBJ [STOP]
 PR :OBJ
 ALTERNATE BF :OBJ
 PR :OBJ
 END

ALTERNATE "BCD
 BCD
 CD

D
D
CD

 BCD

TOPLEVEL TOPLEVEL TOPLEVEL TOPLEVEL commandcommandcommandcommand

When Logo executes the command TOPLEVEL, it
 immediately stops the command it is evaluating,
 and returns control to TOPLEVEL. Compare with
 STOP.

TO ALTERNATEl :OBJ
 IF EMPTYP :OBJ [TOPLEVEL]
 PR :OBJ
 ALTERNATEl BF :OBJ
 PR :OBJ
 END

ALTERNATE "BCD
BCD
CD
D

The most useful way to use TOPLEVEL is in error
escapes.

Both procedures give the global variables OBJ the
sublist L which begins with :X.

TO LOOKFOR :X :L
IF EMPTYP :L [STOP]

IF :X = FIRST :L (MAKE "OBJ) :L]
LOOKFOR :X BF :L
END

?LOOKFOR "Z AZBCZXY
?PR :OBJ
ZXY

TO LOOKFOR1 :X :L
IF EMPTYP :L [STOP]
IF :X = FIRST :L [MAKE "OBJ :L
 TOPLEVEL]
LOOKFOR1 :X BF :L
END

?LOOKFOR1 "Z "AZBCZXY
?PR :OBJ
ZBCZXY

In the second example, the procedure returns to

 TOPLEVEL as soon as OBJ finds the value looked
 for, Z. Compare with the first procedure which
 continues running every instruction in the
 procedure whether or not OBJ has found the value
 it is looking for.

Chapter 8Chapter 8Chapter 8Chapter 8
Logical operationsLogical operationsLogical operationsLogical operations
INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION Sinclair Logo contains the primitives AND, NOT and
 OR; they allow the user to perform logical
 operations.

The inputs to these primitives can only be TRUE and
 FALSE, which in Logo are special words.

In their turn the primitives AND, NOT and OR
 produce results that are only the words TRUE and
 FALSE.

The term predicate is used to describe a function
 that outputs TRUE or FALSE; hence AND, NOT and
 OR are considered to require predicates as their
 inputs.

AND pred1 pred2 AND pred1 pred2 AND pred1 pred2 AND pred1 pred2 operationoperationoperationoperation
(AND pred1(AND pred1(AND pred1(AND pred1 pred2 . . . pred2 . . . pred2 . . . pred2 . . .
predn) predn) predn) predn) Returns TRUE if all the inputs are TRUE, otherwise
 FALSE. If AND has more than two inputs,
 parentheses must appear around AND and its
 inputs.

PRINT AND TRUE TRUE
 TRUE

PRINT AND FALSE FALSE
 TRUE

PRINT (AND TRUE TRUE FALSE)
 FALSE

PRINT 16=16
 TRUE

PRINT 3=3
 TRUE

PRINT AND 16=16 3=3
 TRUE

PRINT AND 16 3
 3 is not true or false

TO DECIMAL? :OBJ
 OP AND NUMBERP :OBJ CHECK :OBJ
 END

TO CHECK :OBJ
 IF EMPTYP :OBJ [OP "FALSE]
 IF EQUALP FIRST :OBJ ". [OP "-
 TRUE]
 OP CHECK BF :OBJ
 END

PRINT DECIMALP 17.0
 FALSE

PRINT DECIMALP 17.635
 TRUE
NOT pred NOT pred NOT pred NOT pred operationoperationoperationoperation

Returns TRUE if the predicate is FALSE and FALSE if
 the predicate is TRUE.

PRINT NOT EQUALP "A "Z
 TRUE

PRINT NOT EQUALP "E "E
 FALSE

PRINT NOT "K=FIRST "KERCHIEF
 FALSE

OR pred1 pred2 OR pred1 pred2 OR pred1 pred2 OR pred1 pred2 operationoperationoperationoperation
(OR pred1 pred2...(OR pred1 pred2...(OR pred1 pred2...(OR pred1 pred2...
predn)predn)predn)predn) Returns TRUE if any of the predicates is TRUE,
 otherwise FALSE. If OR has more than two inputs,
 parentheses must appear around IF and its inputs.

PRINT OR TRUE TRUE
 TRUE

PRINT OR TRUE FALSE
 TRUE

PRINT OR FALSE FALSE
FALSE

PR OR 16=16 3=3
TRUE

PRINT OR 6 3
3 is not true or false

TO MOUNTAINS
CS RT 45
SUBMOUNTAIN
END

TO SUBMOUNTAIN
FD 5 + RANDOM 10
IF OR YCOR > 50 YCOR < 0 [SETH
180 - HEADING]
SUBMOUNTAIN
END

Chapter 9
The outside world

INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION This chapter contains primitives which allow you to

use your keyboard in special ways to communicate
with Logo; see also Chapter 10.

KEYP KEYP KEYP KEYP operationoperationoperationoperation
Returns TRUE if a valid key, or combination of valid
keys, is being pressed; otherwise FALSE.

The following procedure moves the turtle in small
steps. When you press P, the turtle turns RT 30;
when you press Q, the turtle moves LT 30.

TO STEER
FD 2
IF KEYP [TURN RC]
STEER
END

TO TURN :DIR
IF :DIR = "p [RT 30]
IF :DIR = "Q [LT 30]
END

Print object Print object Print object Print object commandcommandcommandcommand
PR objectPR objectPR objectPR object When the PRINT command is given, followed by

ENTER, the outermost brackets or the quote marks
are not printed. Compare with SHOW and TYPE.

Note: PRINT causes a linefeed to occur after the
printing has been performed.

PRINT "A
A

PRINT [YES INDEED]
YES INDEED

TO REPRINT :NOTE :NUM
IF:NUM < 1 [STOP]
PR:NOTE

REPRINT :NOTE :NUM - 1
 END
 REPRINT [HAPPY BIRTHDAY TO
 YOU] 4
 HAPPY BIRTHDAY TO YOU
 HAPPY BIRTHDAY TO YOU
 HAPPY BIRTHDAY TO YOU
 HAPPY BIRTHDAY TO YOU

READCHAR READCHAR READCHAR READCHAR operationoperationoperationoperation
RCRCRCRC Waits for the user to press a valid key, or valid
 combination of keys. The operation returns the
 appropriate character, but does not print it on the
 screen.

TO DRAW
 MAKE "Z READCHAR
 IF :Z = 5 [LT 90]
 IF :Z = 6 [BK 10]
 IF :Z = 7 [FD 10]
 IF :Z = 8 [RT 90]
 DRAW
 END

READLIST READLIST READLIST READLIST operationoperationoperationoperation
RL RL RLRL Returns a list that you give as input. The whole of
 the line entered before the ENTER key is pressed is
 taken as a list. Each character is printed on the
 screen as it is typed.

TO FAIRY-TALE
 PR [MIRROR, MIRROR ON THE WALL,
 WHO IS THE
 FAIREST OF THEM ALL?]
 IF RL = [HER HIGHNESS, THE QUEEN]
 [PR [THE QUEEN
 SMILES] STOP] [PR [THE QUEEN
 IS ANGRY AND ASKS THE
 QUESTION
 AGAIN] FAIRY TALE]
 END

FAIRY.TALE
 MIRROR, MIRROR, ON THE WALL,
 WHO IS THE FAIREST OF

THEM ALL?
 SNOW WHITE
 THE QUEEN IS ANGRY AND ASKS
 THE QUESTION AGAIN
 MIRROR, MIRROR ON THE WALL,
 WHO IS THE FAIREST OF
 THEM ALL?
 HER HIGHNESS, THE QUEEN
 THE QUEEN SMILES

SHOW object SHOW object SHOW object SHOW object commandcommandcommandcommand

Prints the word, list or numbers given as input. Lists
 are printed with brackets around them. As with
 PRINT, the command SHOW causes a linefeed to
 occur after the printing. See also PRINT and TYPE.

SHOW "HARRY
 HARRY

SHOW [FAIRY TALE]
 [FAIRY TALE]

SHOW [A B C]
 [A B C]

SOUND [duration pitch] SOUND [duration pitch] SOUND [duration pitch] SOUND [duration pitch] commandcommandcommandcommand
Allows your Spectrum to make sounds. The

 duration of the sound is given in seconds, and its
 pitch in semitones above middle C is given by
 positive integers; below middle C by negative
 integers. The first input to SOUND must be
 between 0 and 255. The second input must be
 between -62 and 75.

SOUND [1 0]

This procedure will make each key give you a
 sound:

TO SING
 SOUND SE 0.5 (ASCII RC) - 65
 SING
 END

TO PLAY :LIST
 IF EMPTYP :LIST [STOP]
 SOUND SE 0.5 ASCII FIRST :LIST
 PLAY BF :LIST
 END

PLAY [A B C]

STARTROBOT STARTROBOT STARTROBOT STARTROBOT commandcommandcommandcommand
Causes subsequent turtle commands FD, BK, PU,

 PD, RT and LT to be mirrored by the mechanical
 robot or floor turtle which is attached to your
 Spectrum.

Note: Logo searches for the binary file containing
 the instructions to drive the robot. If no binary file is
 found in memory, it will try to load a file with the
 name ROBOT from your microdrive cartridge, or
 from cassette if your 'drive' number is set to zero.
 (See SETDRIVE.)

STOPROBOT STOPROBOT STOPROBOT STOPROBOT commandcommandcommandcommand

Reverses the effect of STARTROBOT.

TYPE object TYPE object TYPE object TYPE object commandcommandcommandcommand
(TYPE object1 object2...(TYPE object1 object2...(TYPE object1 object2...(TYPE object1 object2...
objectn) objectn) objectn) objectn) Prints its object on the screen. But, unlike PRINT,
 there is no linefeed after the printing.

Outermost brackets of a list are not parted.

If TYPE has two or more inputs then TYPE and all
 the inputs must be enclosed in parentheses.

See also PRINT and SHOW.

TYPE "A
 A

TYPE [A B C]
 ABC
 TYPE "A TYPE [A B C]
 AA B C

TYPE [A B C][D E F][G H I])
 A B CD E FG H I

WAIT n WAIT n WAIT n WAIT n commandcommandcommandcommand
Logo waits n/50ths of a second.

TO SLOW.MARCH :DIST

 REPEAT :DIST [FD 1 WAIT 1]
 END

HT
 REPEAT 4 [SLOW.MARCH 80 RT 90]

Chapter 10
Screen commands
INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION This chapter describes primitives which allow you to

interact with your computer. When you load your
Sinclair Logo you are in textscreen mode; 22 lines
are available for text.

When you are in graphics mode, 22 lines are
available for graphics, with two more lines at the
bottom for text. You immediately enter graphics
mode when you give Logo a graphics command.

Each line has space for 32 characters. The first
column in Logo mode and in TO mode is a prompt.
This indicates that Logo is ready for your
instructions. The last column is reserved for an
exclamation point which indicates an unfinished

 Logo line longer than 32 characters.

BRIGHT n BRIGHT n BRIGHT n BRIGHT n commandcommandcommandcommand

BRIGHT 1 tells Logo to start printing on 'bright
 paper'. Logo will stay in this state until the

 command BRIGHT 0 is executed, the toplevel
 procedure is completed, or an error occurs.

TO DIRECTION
 TS

SETCUR [12 3]
 BRIGHT 1
 PR [DIRECTION]
 BRIGHT 0
 END

CLEARTEXT CLEARTEXT CLEARTEXT CLEARTEXT commandcommandcommandcommand
CTCTCTCT Clears all text from the screen. When in graphics
 mode, CT will clear the two lines at the bottom of
 the screen.

COPYSCREEN COPYSCREEN COPYSCREEN COPYSCREEN operationoperationoperationoperation

Copies everything presently on your screen on to
 your ZX Printer (provided it is connected!) This

allows you to make a 'hard copy' of your text and
 graphics procedures.

CS REPEAT 8 [REPEAT 6 [FD 10
 RT 45]
 RT 45] HT
 COPYSCREEN

CURSOR CURSOR CURSOR CURSOR operationoperationoperationoperation
The cursor is the flashing rectangle on your screen

 which moves as you type. It indicates where the
 next character you type will appear. The primitive
 CURSOR returns the column and line numbers of
 the cursor position as a list.

PR CURSOR

FLASH FLASH FLASH FLASH commandcommandcommandcommand

Tells Logo to start printing on 'flashing paper'. Logo
 will stay in this state until the command NORMAL
 is executed, the toplevel procedure is completed, or
 an error occurs.

TS
 SETCUR [12 10]
 FLASH
 PR [HOW JOLLY]

INVERSE INVERSE INVERSE INVERSE commandcommandcommandcommand
Tells logo to start printing with the background and

 foreground colours inversed. Logo will stay in this
 state until the command NORMAL is executed, the
 toplevel procedure is completed, or an error occurs.

TS
 SETCUR [12 10]
 INVERSE
 PR [IS THIS JOLLY TOO?]

NORMAL NORMAL NORMAL NORMAL command command command command

Tells Logo to resume printing without any inversion
 or flashing. This command has no effect if the
 printing is already normal.

FLASH [IGUANAS ARE CUTE] NORMAL
 [IGUANAS ARE CUTE]

OVER n OVER n OVER n OVER n commandcommandcommandcommand
OVER 1 tells Logo to start printing over any existing

 lines or text. (The over-printing is made on an
 exclusive-OR principle: set pixels are reset, and
 reset pixels are set.)

Logo will stay in this state until the command OVER
 0 is executed, the toplevel procedure is completed,
 or an error occurs.

TO OVERWRITE
 TS

SETCUR [12 3]
 PR [WRITING]
 OVER 1
 WAIT 15
 SETCUR [12 3]
 PR [WRITING]
 OVER.O
 END

SETCURSOR [a b] SETCURSOR [a b] SETCURSOR [a b] SETCURSOR [a b] commandcommandcommandcommand
SETCUR [a bSETCUR [a bSETCUR [a bSETCUR [a b] Moves the cursor to a position indicated by the two
 inputs a and b. The first element is the column
 number; the second, the line number. Columns are
 numbered from 0 to 30 and lines from 0 to 21.

TO MOVECURSOR :X :Y
 SETCURSOR LIST (:X + FIRST CURSOR)
 (:Y + LAST CURSOR)
 END

SETCURSOR [25 12] TYPE "A MOVE
 CURSOR 2 5 PRINT "B

SETTC [n n] SETTC [n n] SETTC [n n] SETTC [n n] commandcommandcommandcommand

Allows the user to specify the background colour
 and the foreground colour when printing text.

SETTC [2 4] PR [GREEN ON RED]

See BACKGROUND (Chapter 2) for the table of
 values for n.

TEXTSCREEN TEXTSCREEN TEXTSCREEN TEXTSCREEN commandcommandcommandcommand
TS TS TSTS With TS your entire Logo screen is available for

 texts. You cannot see the turtle while you are in
 text mode.

Chapter 11
Workspace

INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION When you load Logo into your Spectrum, it

occupies only part of the memory. The rest of the
memory is available to you as your workspace.
The primitives presented in this chapter allow you
to print out the procedures and variables from the
workspace, and to erase them.

Be careful when using the 'erasing' primitives as
their effects are permanent!

ERALL ERALL ERALL ERALL commandcommandcommandcommand
ERases ALL that you have created in the workspace.
It is as if you turned off and restarted Logo. Be sure
that you have saved all the procedures and
variables you want to keep before you use this
command - see Chapter 12 for details.

Note: The current contents of the editor are not
affected by ERALL. To clear the editor as well, use
 ERALL and EDIT [].

ERASE name ERASE name ERASE name ERASE name commandcommandcommandcommand
ER nameER nameER nameER name Erases the named procedure or procedures from

your workspace.

ERASE "BOX

 ER [BOX]

Erases the procedure called BOX

ER [TRIANGLE BOX]
ERN name ERN name ERN name ERN name commandcommandcommandcommand

Erases the Named variable(s) from your
 Workspace.

ERN "SIDE

or

ERN [SIDE]

Erases the variable SIDE

ERN [SIDE ANGLE]

Erases the variables SIDE and ANGLE

ERN ERN ERN ERN commandcommandcommandcommand

ERases the NameS and values of all variables in your
 workspace.

ERPS ERPS ERPS ERPS commandcommandcommandcommand

ERases all the Procedures from your workspace.

PO name PO name PO name PO name commandcommandcommandcommand

Prints Out the definition of the named
 procedure(s).

PO "SQUARE

or

PO [SQUARE]

TO SQUARE :SIDE
 REPEAT 4 [FD :SIDE RT 90]
 END

POALLPOALLPOALLPOALL commandcommandcommandcommand

Prints Out the titles and definitions of ALL
 procedures, and the value of every variable, in your
 workspace.

PONS PONS PONS PONS commandcommandcommandcommand

Prints Out the NameS and values of all the variables
 in your workspace.

AND MAKE "SIDE "LENGTH
 MAKE "ANGLE 90
 MAKE "COLOURS [PINK BLUE]

POPS POPS POPS POPS commandcommandcommandcommand
Prints Out the definitions of all the Procedures

 currently in the workspace.

POTS POTS POTS POTS commandcommandcommandcommand

Prints Out the TitleS of all the procedures in the
 workspace.

POTS
 TO SQUARE :SIDE
 TO GREET :R

Note: Use the keys SYS and S to control the
 scrolling of the screen; if necessary use PRINTON
 (your print-out primitive) PRINTOFF if you wish
 your printing to appear on the ZX Printer as well
 as the screen.

Chapter 12
Saving and retrieving your work
INTRODUCTION While you are programming in Sinclair Logo, the
 machine stores all the procedures you have taught
 it in its workspace. Unfortunately, when you turn
 the machine off, it forgets everything because the
 workspace is a part of the computer memory that
 remembers only while the computer is on.

You may save your work at any time during a Logo
 session. First, you arrange your work in files; you
 decide what should go into each file. Then you can
 save it on a cassette or Microdrive, and retrieve it
 later when required.

A File can be of three types:
 1 Logo procedural file.
 A file containing Logo procedures (and variables if
 created using SAVEALL, see below).

2 Editor file.
 The current contents of the Logo Editor can be
 saved, and retrieved.
 3 Screen file.

The current display can be saved, and retrieved.
 (See Chapter 14 for details of how binary files can
 be saved and retrieved.)

Note: If at any time when using Logo a BASIC error
 report appears, as will always occur if, for example,
 you try to use a Microdrive unit which does not

have a cartridge in it, then Logo can be restarted
with the BASIC line.

RUNRUNRUNRUN
When using this `warm` start, the screen display will
Be lost but the workspace is returned intact.

Saving your work on cassetteSaving your work on cassetteSaving your work on cassetteSaving your work on cassette
SAVESAVESAVESAVE You can save your work on cassette files; any

 "filename [names] cassette tape will do. While not necessary, a tape
 counter is useful. The cassette recorder needs an
 input socket for use with a microphone and an
 output socket for use with earphones. Connect the
 mic socket on the cassette player to the mic socket
 on the ZX Spectrum, and if you have the ear socket
 already connected, pull out the ear jacks.

You may give your file any name you like, precedec
 by a " (quote mark). Filenames can have up to
 seven characters. Follow the filename with the
 name of the procedure to be saved.

SAVE "MYFILE "SQUARE1

You may save more than one procedure in a file by
 typing brackets around the procedure names.

SAVE "MYFILE CSQUARE1 GREET]

Start the tape by simultaneously pressing the PLAY
 and RECORD keys. Logo will tell you to press any
 key. While the file is being saved the border flashes
 Once the flashing has finished you may STOP the
 tape.

Replace the ear jack.

It's a good idea to keep a written record describing
 each file. You can save several different files on the
 cassette. Advance the tape approximately ten
 counts before saving another file.

SAVEALL "filename SAVEALL "filename SAVEALL "filename SAVEALL "filename command command command command

Logo saves everything currently in the workspace
 under the given filename, ie, all procedures and
 variables.

SAVED "filename SAVED "filename SAVED "filename SAVED "filename command command command command

Logo saves everything currently in the Editor under
 the given filename.

SAVESCR "filename SAVESCR "filename SAVESCR "filename SAVESCR "filename commandcommandcommandcommand
Logo saves everything currently on the screen

 under the given filename.

Saving your work on MicrodriveSaving your work on MicrodriveSaving your work on MicrodriveSaving your work on Microdrive

The following primitives apply to the Microdrive.

SETDRIVE 0... 8 SETDRIVE 0... 8 SETDRIVE 0... 8 SETDRIVE 0... 8 commandcommandcommandcommand

Tells Logo whether you wish to use a cassette
 player, SETDRIVE (also the default state), or a
 particular Microdrive, 1-8.

To save your workspace on Microdrive 1 use:

SETDRIVE 1
 SAVEALL "FILENAME

CATALOG CATALOG CATALOG CATALOG commandcommandcommandcommand
(Microdrive only) Prints the name of the cartridge, all the filenames
 (Logo files and others) and the amount of unused
 space remaining (in K).

SETDRIVE 1 (for Microdrive 1)
 CATALOG

ERASEFILE "filename, filetype ERASEFILE "filename, filetype ERASEFILE "filename, filetype ERASEFILE "filename, filetype commandcommandcommandcommand
(Microdrive only) Instructs Logo to erase the file named from your

 Microdrive. If no filetype is entered Logo will
 assume a filetype of LOG. Other types of file can be
 BIN (binary)
 SCR (screen)
 TXT (editor)

Retrieving your work from cassetteRetrieving your work from cassetteRetrieving your work from cassetteRetrieving your work from cassette
LOAD LOAD LOAD LOAD Position your cassette tape at, or before, the file

 "filename, filetype you want to retrieve. Connect your recorder to the
 Spectrum in the normal manner for loading,
 referring to your Introduction to the Sinclair

Start the tape by pressing the PLAY key. When the
File is loaded, Logo tells you that the procedures are
Defined, and the prompt and cursor reappear on
the screen.

LOAD "MYFILE
 SQUARE1 defined
 GREET defined

Everything you saved in the file will be loaded back
 into your workspace.

Note: Several files can be loaded into the
 workspace, one by one. Be careful, if you use the
 same procedure name in two or more files then
 Logo will leave you with the newest procedure.

LOADD LOADD LOADD LOADD "filename commandcommandcommandcommand

Instructs Logo to load everything that was saved in
 your SAVED "filename files and make it the current
 contents of the Editor.

LOADSCR LOADSCR LOADSCR LOADSCR "filename commandcommandcommandcommand

Instructs Logo to load everything saved in your
 SAVESCR "filename file and display it.

Retrieving your work from MicrodriveRetrieving your work from MicrodriveRetrieving your work from MicrodriveRetrieving your work from Microdrive

The particular Microdrive that you will use must be
 the 'current drive'. Use SETDRIVE 1 ... 8 if
 necessary.

Files may now be retrieved, as from cassette, using:

LOAD LOAD LOAD LOAD "filename
 LLLLOADD OADD OADD OADD "filename
 LOADSCR LOADSCR LOADSCR LOADSCR "filename

Saving your work on the printerSaving your work on the printerSaving your work on the printerSaving your work on the printer

The following primitives allow a ZX Printer to be
 used with Sinclair Logo.

PRINTON PRINTON PRINTON PRINTON Tells Logo to print everything that follows.
 Everything you print on your screen will also be
 printed on your Printer.

PRINTOFFPRINTOFFPRINTOFFPRINTOFF Tells Logo to stop printing.

COPYSCREENCOPYSCREENCOPYSCREENCOPYSCREEN Tells Logo to copy whatever is on the upper 22 lines
 of your screen. This primitive works with both the
 text screen and the graphics screen.

Chapter 13
Definitions and redefinitions of
functions
INTRODUCTION INTRODUCTION INTRODUCTION INTRODUCTION The primitives presented in this chapter enable
 procedures to be defined and handled from within
 other procedures.

COPYDEF newname name COPYDEF newname name COPYDEF newname name COPYDEF newname name commandcommandcommandcommand

Copies the definition of an existing procedure name
 to a new procedure name.

COPYDEF "SQ "SQUARE

copies the definition of SQUARE to SQ. The
 existing procedure is not erased.

DEFIDEFIDEFIDEFINE namelist NE namelist NE namelist NE namelist commandcommandcommandcommand

Takes two inputs. The first is the name of a
 procedure and the second a list. The elements of
 the list are a list of inputs to the new procedure, and
 a list for each procedure line. DEFINE allows you to
 write procedures which define other procedures.

DEFINE "TRY [[:X :Y][PRINT
 :X][PRINT :Y]
 PO "TRY

TO TRY :X :Y
 PRINT :X
 PRINT :Y
 END

DEFINE "GREET [[][PR [GOOD
 DAY]]
 PO "GREET

TO GREET
 PRINT [GOOD DAY]
 END

Note: If the new procedure is not to have any
 inputs, then the first item of the list is to be an
 empty list [].
 No END is written at the end of the list.

DEFINEDP worDEFINEDP worDEFINEDP worDEFINEDP word ddd operationoperationoperationoperation

Returns TRUE if a word is the name of a procedure-
 otherwise FALSE.

PRIMITIVE? word PRIMITIVE? word PRIMITIVE? word PRIMITIVE? word operationoperationoperationoperation
Returns TRUE if its input is a Logo primitive-

 otherwise FALSE.

TEXT TEXT TEXT TEXT operationoperationoperationoperation

When given a procedure name as input, TEXT
returns the text of the procedure as a list. The
format is described under DEFINE. With TEXT you
can write procedures which examine and
manipulate other procedures.

TO SHAPE :X :Y
FD :X
RT :Y
END

PR TEXT "SHAPE
[:X :Y] [FD :X] [RT :Y]

Chapter 14
Diverse functions
INTRODUCTION INTRODUCTION INTRODUCTION INTRODUCTION Certain primitives affect the Logo system itself. You
 can use them to access the computer memory or its
 contents directly.

Because you can accidentally destroy the contents
 of your workspace, be sure you have saved all your
 work before using them. In general, the names of
 such primitives start with a. (dot).

NODES NODES NODES NODES operationoperationoperationoperation

Returns the number of free nodes: how much space
 remains in your workspace for procedures,
 variables, and running procedures. A node occupies
 five bytes of memory. The use of NODES
 immediately after RECYCLE will tell you how many
 nodes are still free.

RECYCLE RECYCLE RECYCLE RECYCLE commandcommandcommandcommand

Frees as many nodes as possible by performing a
 'garbage collection'.
 Garbage is collected automatically as the
 workspace becomes full, but each time it takes one
 second.

The use of RECYCLE prevents the automatic
 garbage collector from slowing things down at an
 inopportune time.

.CONTENTS .CONTENTS .CONTENTS .CONTENTS commandcommandcommandcommand

Outputs a list of everything Logo knows. This
 includes your procedures and variables, and most of
 the things you've typed in. Note: CONTENTS can
 use a lot of node space.

.PRIMITIVES .PRIMITIVES .PRIMITIVES .PRIMITIVES commandcommandcommandcommand

Prints out the Logo primitives.

.RESERVE n RESERVE n RESERVE n RESERVE n commandcommandcommandcommand
If you wish to load a machine code program, you

 may reserve a place for it in the Logo workspace,
 specifying how many bytes you wish to reserve.
 .RESERVE n tells Logo to reserve n bytes for holding
 a machine code program. .RESERVE n can be used
 ONLY at the beginning of a Logo session.

For example, suppose you wish to reserve 200
 bytes of memory to load a machine code program
 You give the command .RESERVE 200. The
 diagram below illustrates what will happen in
 Logo's memory.

65535

65024

64824

.RESERVED .RESERVED .RESERVED .RESERVED
Returns the beginning and end address

 area reserved by .RESERVE.

.BLOAD "filename address .BLOAD "filename address .BLOAD "filename address .BLOAD "filename address

Loads a file from your cassette or Micro
 memory at the given address. In this ex
 start address is 64824.

.BLOAD "PICTURE 64824

BSAVE "fiBSAVE "fiBSAVE "fiBSAVE "filename [start address length] lename [start address length] lename [start address length] lename [start address length]

Looks for the address given and saves
 a file called filename. In this example, t
 address is 64824 and the size is 200.

.BSAVE "MAP C64824 2003

SYSTEM VARIABLE

● RESERV

WORK
SPACE

Logo
SYSTEM

VARIABLES

SYSTEM

RAM

ROM
24832

16384

0000000000000000

commandcommandcommandcommand
es of the

commandcommandcommandcommand
drive into
ample, the

commandcommandcommandcommand
n bytes under
he start

.SETSERIAL n .SETSERIAL n .SETSERIAL n .SETSERIAL n commandcommandcommandcommand
Takes the baud rate n and then sets the speed of

 transmission. The baud rate may be: 50,110, 300,
 600,1200,2400,4800,9600,or 19200.
 The default for the baud rate is 9600.

SERIALIN SERIALIN SERIALIN SERIALIN commandcommandcommandcommand

Reads everything that arrives at the serial port
 (RS232 Interface) at the set baud rate, and outputs
 a byte between 0 and 255.

.SERIALOUT n SERIALOUT n SERIALOUT n SERIALOUT n commandcommandcommandcommand
 Sends a byte to the serial port (RS232 Interface).

.DEPOSIT address n .DEPOSIT address n .DEPOSIT address n .DEPOSIT address n commandcommandcommandcommand

Places the value n in the location specified by the
 address.

.DEPOSIT 65010 10

The following example shows how .DEPOSIT can
 be used to make a user defined character which can
 later be printed.

TO USR.A
 DEPOSIT 65368 64
 DEPOSIT 65369 68
 DEPOSIT 65370 72
 DEPOSIT 65371 80
 DEPOSIT 65372 42
 DEPOSIT 65373 74
 DEPOSIT 65374 15
 DEPOSIT 65375 2
 PR CHAR 144
 END

USR.A
 ¼

TO DEFCHAR :L
 IF EMPTYP :L [STOP]
 .DEPOSIT 65368 + COUNT :LIST LAST
 :L
 DEFCHAR BF :L
 END

Remember there are twenty-one user-definable
 graphics characters which can be printed using PR
 CHAR 144...164.

.EXAMINE address .EXAMINE address .EXAMINE address .EXAMINE address commandcommandcommandcommand

Recovers a value stored at the specified address.

PRINT .EXAMINE 65010
 10
.CALL address .CALL address .CALL address .CALL address commandcommandcommandcommand

Runs a machine code program previously installed
 by a. BLOAD

Appendix 1
Logo messages

Not enough inputs to ...
 I don't know how to ...
 You don't say what to do with ...
 ... does not output to ...
 ... is used by Logo
 ... is already defined
 ... is not true or false
 ... is not a word
 ... defined
 Too many inside parentheses
 ... open.file problem
 ... file not found
 Bad file name
 You're at toplevel
 STOPPED!!!
 Turtle out of field
 Not enough space to proceed
 ... doesn't like
 ... has no value
 ... is a primitive
 Not enough items in ...
 Overflow
 ... can't divide by zero
 ... number too big
 ... as input
 ... in

Appendix 2
ASCII character setASCII character setASCII character setASCII character set
Code Character Code Character

 38 &
0 39 ‘
1 40 (
2 41)
3 42 *
4 43 +
5 44 ,
6 PRINT comma 45 _
7 EDIT 46 .
8 cursor left 47 /
9 cursor right 48 0
10 cursor down 49 1
11 cursor up 50 2
12 DELETE 51 3
13 ENTER 52 4
14 number 53 5
15 not used 54 6
16 INK control 55 7
17 PAPER control 56 8
18 FLASH control 57 9
19 BRIGHT control 58 :
20 INVERSE control 59 ;
21 OVER control 60 <
22 AT control 61 =
23 TAB control 62 >
24 63 ?
25 64 @
26 65 A
27 66 B
28 67 C
29 68 D
30 69 E
31 70 F
32 SPACE 71 G
33 ! 72 H
34 " 73 I
35 # 74 J
36 $ 75 K
37 %

not usednot usednot usednot used

not usednot usednot usednot used

Code Character Code Character
76 L 121 y
77 M 122 z
78 N 123 {
79 O 124 |
80 P 125 }
81 Q 126 ~
82 R 127 ©
83 S 128 �
84 T 129 Å
85 U 130 ı
86 V 131 Ç
87 W 132 Î
88 X 133 ‰
89 Y 134 Ï
90 Z 135 Ì
91 [136 Ó
92 / 137 È
93] 138 Ô
94 ^ 139 Ì
95 _ (underscore) 140 Ò
96 # 141 ˜
97 a 142 ˆ
98 b 143 Ø
99 c 144 (a)
100 d 145 (b)
101 e 146 (c)
102 147 (d)
103 f 148 (e)
104 g 149 (f)
105 h 150 (g)
106 i 151 (h)
107 j 152 (i)
108 k 153 (j)
109 l 154 (k) user
110 m 155 (l) graphics
111 n 156 (m)
112 o 157 (n)
113 p 158 (o)
114 q 159 (p)
115 r 160 (q)
116 s 161 (r)
117 t 162 (s)
117 u 163 (t)
118 v 164 (u)
119 w 165 RND
120 x

Index (to jump to a page click on the page number)
AND 61 COPYDEF 83
ARCCOS 40 COPYSCREEN 71,82
ARCCOT 40 CURSOR 72
ARCSIN 40 decimal fraction 39
ARCTAN 40 DEFINE 83
Arithmetic operations 11,39 DEFINEDP 84
ASCII character 24 defining and editing 49
ASCII code 24,91 delimiter 4
Aspect ratio 24,91 .DEPOSIT 87
BACK (BK) 15 DIV 41
BACHGROUND (BG) 15 diverse functions 85
.BLOAD 86 division (/) 46
brackets 6 DOT 16,85
BREAKSPACE 51 EDIT 49
BRIGHT 71 EDIT mode 12,49
.BSAVE 86 EDNS 51
BUTFIRST (BF) 25 Element 3,23
BUTLAST (BL) 26 E MODE C 51
BYE 14,55 E MODE 5 50
call 2 E MODE 6 50
.CALL 88 E MODE 7 50
CAPS 50 E MODE 8 50
CAPS 5 50 E MODE 8 50
CAPS 6 50 E MODE E 50
CAPS 7 50 E MODE N 51
CAPS 8 50 E MODE P 51
CAPS 0 50 E MODE R 50
CATALOG 81 E MODE Y 50
CHAR 26 empty 3
CLEAN 16 EMPTYP 27
CLEARTEXT (CT) 71 empty word 3
CLEARSCREEN (CS) 16 END 52
colon (:) 5 EQUALP 28
command 6 equals (=) 47
Conditional instruction 55 ERALL 75
COSINE 40 ERASE (ER) 75
COTANGENT 41 ERASEFILE 81
COUNT 26 ERN 75
colours of screen 15 ERNS 75
.CONTENTS 85 ERPS 76
co – ordinates of screen 19 .EXAMINE 88

(to jump to a page click on the page number)

execute 3 NOT 61,62
FALSE 3,61 NUMBERP 32
FIRST 28 Object 23
FENCE 16 OPERATION 6
Files 79 OR 61,62
FLASH 72 OUTPUT 56
FORWARD 16 OVER 72
FPUT 29 parentheses 6
Garbage collection 85 pen 15
grammar 1 PENCOLOUR (PC) 17
Graphics screen 12,15 PENDOWN (PD) 17
Greater than (>) 47 PENERASE (PE) 18
HEADING 16 PENREVERSE (PX) 18
HIDETURTLE 17 PENUP (UP) 18
HOME 17 Plus(+) 45
IF 55 PO 76
Infix 39,45 POALL 76
INT 41 PONS 76
Integer 39 POPS 77
Input 4 POTS 77
INVERSE 72 POSITION (POS) 18
ITEM 29 Prefix 39
KEYP 65 Primitive procedures 1
LAST 29 PRIMITIVEP 84
LEFT (LT) 17 .PRIMITIVES 85
Less than (<) 46 PRINT (PR) 65
LAST 29 PRINTOFF 82
List 3,24 PRINTON 82
LIST 30 Procedures 1
LISTP 30 PRODUCT 42
LOAD 81 Quote mark 5
LOADD 82 RANDOM 42
LOADSCR 82 READCHAR (RC) 66
Logical operations 61 READLIST(RL) 66
Logo messages 89 recursion 13
Logo mode 12 recursive ascent 13
Logo object 23 recursive descent 13
LPUT 31 RECYCLE 85
MAKE 35 REMAINDER 43
MEMBERP 31 REPEAT 57
Microdrive 79 Repeat instruction 55
Minus (-) 45 .RESERVE 86
MAMEP 36 .RESERVED 86
NODES 85 reversing pen 18
NORMAL 72 RIGHT (RT) 18

(to jump to a page click on the page number)

ROUND 44 turtle’s field 15
RUN 57 TYPE 68
SAVE 80 value 35
SAVEALL 80 Variable 35
SAVED 80 WAIT 69
SAVESCR 81 WINDOW 20
Screen commands 71 word 3
SCRUNCH 18 WORD 23,33
SENTENCE(SE) 32 WORDP 33
.SERIALIN 87 workspace 75
.SERIALOUT 87 WRAP 21
SETBG 19 XCOR 21
SETBORDER (SETBR) 19 YCOR 21
SETCURSOR (SETCUR) 73 + (plus) 45
SETDRIVE 81 - (minus) 45
SETHEADING (SETH) 19 * (times) 46
SETPC 19 / (division) 46
SETPOS 19 < (less than) 46
SETSCRUNCH (SETCR) 19 > (greater than) 47
.SETSERIAL 87 = (equals) 47
SETX 20
SETY 20
SHOW 67
SHOWNP 20
SHOWTURTLE (ST) 20
SINE 44
SOUND 67
SQRT 44
STOP instruction 55,58
Subprocedure 2,55
SUM 45
superprocedure 2,55
SYS 50
SYS S 51
TANGENT 45
TEXT 12,84
TEXTSCREEN (TS) 74
THING 37
times (*) 46
TO mode 12,52
TOPLEVEL 59
TOWARDS 20
TRUE 3,61
turtle 15
turtle graphics 15

(to jump to a page click on the page number)

(to jump to a page click on the page number)

	Contents
	Preface

